Metamath Proof Explorer


Definition df-irreflexive

Description: Define irreflexive relation; relation R is irreflexive over the set A iff A. x e. A -. x R x . Note that a relation can be neither reflexive nor irreflexive. (Contributed by David A. Wheeler, 1-Dec-2019)

Ref Expression
Assertion df-irreflexive R Irreflexive A R A × A x A ¬ x R x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 1 0 wirreflexive wff R Irreflexive A
3 1 1 cxp class A × A
4 0 3 wss wff R A × A
5 vx setvar x
6 5 cv setvar x
7 6 6 0 wbr wff x R x
8 7 wn wff ¬ x R x
9 8 5 1 wral wff x A ¬ x R x
10 4 9 wa wff R A × A x A ¬ x R x
11 2 10 wb wff R Irreflexive A R A × A x A ¬ x R x