Metamath Proof Explorer
Description: Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
df-limits |
|
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
climits |
|
| 1 |
|
con0 |
|
| 2 |
|
cbigcup |
|
| 3 |
2
|
cfix |
|
| 4 |
1 3
|
cin |
|
| 5 |
|
c0 |
|
| 6 |
5
|
csn |
|
| 7 |
4 6
|
cdif |
|
| 8 |
0 7
|
wceq |
|