Description: Define the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-limits | |- Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | climits | |- Limits |
|
| 1 | con0 | |- On |
|
| 2 | cbigcup | |- Bigcup |
|
| 3 | 2 | cfix | |- Fix Bigcup |
| 4 | 1 3 | cin | |- ( On i^i Fix Bigcup ) |
| 5 | c0 | |- (/) |
|
| 6 | 5 | csn | |- { (/) } |
| 7 | 4 6 | cdif | |- ( ( On i^i Fix Bigcup ) \ { (/) } ) |
| 8 | 0 7 | wceq | |- Limits = ( ( On i^i Fix Bigcup ) \ { (/) } ) |