Metamath Proof Explorer


Definition df-oml

Description: Define the class of orthomodular lattices. Definition from Kalmbach p. 16. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion df-oml OML=lOL|aBaselbBaselalbb=ajoinlbmeetlocla

Detailed syntax breakdown

Step Hyp Ref Expression
0 coml classOML
1 vl setvarl
2 col classOL
3 va setvara
4 cbs classBase
5 1 cv setvarl
6 5 4 cfv classBasel
7 vb setvarb
8 3 cv setvara
9 cple classle
10 5 9 cfv classl
11 7 cv setvarb
12 8 11 10 wbr wffalb
13 cjn classjoin
14 5 13 cfv classjoinl
15 cmee classmeet
16 5 15 cfv classmeetl
17 coc classoc
18 5 17 cfv classocl
19 8 18 cfv classocla
20 11 19 16 co classbmeetlocla
21 8 20 14 co classajoinlbmeetlocla
22 11 21 wceq wffb=ajoinlbmeetlocla
23 12 22 wi wffalbb=ajoinlbmeetlocla
24 23 7 6 wral wffbBaselalbb=ajoinlbmeetlocla
25 24 3 6 wral wffaBaselbBaselalbb=ajoinlbmeetlocla
26 25 1 2 crab classlOL|aBaselbBaselalbb=ajoinlbmeetlocla
27 0 26 wceq wffOML=lOL|aBaselbBaselalbb=ajoinlbmeetlocla