Metamath Proof Explorer


Definition df-oml

Description: Define the class of orthomodular lattices. Definition from Kalmbach p. 16. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion df-oml OML = l OL | a Base l b Base l a l b b = a join l b meet l oc l a

Detailed syntax breakdown

Step Hyp Ref Expression
0 coml class OML
1 vl setvar l
2 col class OL
3 va setvar a
4 cbs class Base
5 1 cv setvar l
6 5 4 cfv class Base l
7 vb setvar b
8 3 cv setvar a
9 cple class le
10 5 9 cfv class l
11 7 cv setvar b
12 8 11 10 wbr wff a l b
13 cjn class join
14 5 13 cfv class join l
15 cmee class meet
16 5 15 cfv class meet l
17 coc class oc
18 5 17 cfv class oc l
19 8 18 cfv class oc l a
20 11 19 16 co class b meet l oc l a
21 8 20 14 co class a join l b meet l oc l a
22 11 21 wceq wff b = a join l b meet l oc l a
23 12 22 wi wff a l b b = a join l b meet l oc l a
24 23 7 6 wral wff b Base l a l b b = a join l b meet l oc l a
25 24 3 6 wral wff a Base l b Base l a l b b = a join l b meet l oc l a
26 25 1 2 crab class l OL | a Base l b Base l a l b b = a join l b meet l oc l a
27 0 26 wceq wff OML = l OL | a Base l b Base l a l b b = a join l b meet l oc l a