| Step |
Hyp |
Ref |
Expression |
| 0 |
|
coml |
|- OML |
| 1 |
|
vl |
|- l |
| 2 |
|
col |
|- OL |
| 3 |
|
va |
|- a |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- l |
| 6 |
5 4
|
cfv |
|- ( Base ` l ) |
| 7 |
|
vb |
|- b |
| 8 |
3
|
cv |
|- a |
| 9 |
|
cple |
|- le |
| 10 |
5 9
|
cfv |
|- ( le ` l ) |
| 11 |
7
|
cv |
|- b |
| 12 |
8 11 10
|
wbr |
|- a ( le ` l ) b |
| 13 |
|
cjn |
|- join |
| 14 |
5 13
|
cfv |
|- ( join ` l ) |
| 15 |
|
cmee |
|- meet |
| 16 |
5 15
|
cfv |
|- ( meet ` l ) |
| 17 |
|
coc |
|- oc |
| 18 |
5 17
|
cfv |
|- ( oc ` l ) |
| 19 |
8 18
|
cfv |
|- ( ( oc ` l ) ` a ) |
| 20 |
11 19 16
|
co |
|- ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) |
| 21 |
8 20 14
|
co |
|- ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) |
| 22 |
11 21
|
wceq |
|- b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) |
| 23 |
12 22
|
wi |
|- ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) |
| 24 |
23 7 6
|
wral |
|- A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) |
| 25 |
24 3 6
|
wral |
|- A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) |
| 26 |
25 1 2
|
crab |
|- { l e. OL | A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) } |
| 27 |
0 26
|
wceq |
|- OML = { l e. OL | A. a e. ( Base ` l ) A. b e. ( Base ` l ) ( a ( le ` l ) b -> b = ( a ( join ` l ) ( b ( meet ` l ) ( ( oc ` l ) ` a ) ) ) ) } |