Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Adrian Ducourtial
Clone theory
df-prj
Metamath Proof Explorer
Description: Define the function that, for a set a , arity n , and index
i , returns the i -th n -ary projection on a . This is
the n -ary operation on a that, for any sequence of n
elements of a , returns the element having index i .
(Contributed by Adrian Ducourtial , 3-Apr-2025)
Ref
Expression
Assertion
df-prj
⊢ prj = a ∈ V ⟼ n ∈ ω ∖ 1 𝑜 , i ∈ n ⟼ x ∈ a n ⟼ x ⁡ i
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cprj
class prj
1
va
setvar a
2
cvv
class V
3
vn
setvar n
4
com
class ω
5
c1o
class 1 𝑜
6
4 5
cdif
class ω ∖ 1 𝑜
7
vi
setvar i
8
3
cv
setvar n
9
vx
setvar x
10
1
cv
setvar a
11
cmap
class ↑ 𝑚
12
10 8 11
co
class a n
13
9
cv
setvar x
14
7
cv
setvar i
15
14 13
cfv
class x ⁡ i
16
9 12 15
cmpt
class x ∈ a n ⟼ x ⁡ i
17
3 7 6 8 16
cmpo
class n ∈ ω ∖ 1 𝑜 , i ∈ n ⟼ x ∈ a n ⟼ x ⁡ i
18
1 2 17
cmpt
class a ∈ V ⟼ n ∈ ω ∖ 1 𝑜 , i ∈ n ⟼ x ∈ a n ⟼ x ⁡ i
19
0 18
wceq
wff prj = a ∈ V ⟼ n ∈ ω ∖ 1 𝑜 , i ∈ n ⟼ x ∈ a n ⟼ x ⁡ i