Metamath Proof Explorer


Definition df-ref

Description: Define the refinement relation. (Contributed by Jeff Hankins, 18-Jan-2010)

Ref Expression
Assertion df-ref Ref = x y | y = x z x w y z w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cref class Ref
1 vx setvar x
2 vy setvar y
3 2 cv setvar y
4 3 cuni class y
5 1 cv setvar x
6 5 cuni class x
7 4 6 wceq wff y = x
8 vz setvar z
9 vw setvar w
10 8 cv setvar z
11 9 cv setvar w
12 10 11 wss wff z w
13 12 9 3 wrex wff w y z w
14 13 8 5 wral wff z x w y z w
15 7 14 wa wff y = x z x w y z w
16 15 1 2 copab class x y | y = x z x w y z w
17 0 16 wceq wff Ref = x y | y = x z x w y z w