Metamath Proof Explorer


Definition df-sec

Description: Define the secant function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . The sec function is defined in ISO 80000-2:2009(E) operation 2-13.6 and "NIST Digital Library of Mathematical Functions" section on "Trigonometric Functions" http://dlmf.nist.gov/4.14 . (Contributed by David A. Wheeler, 14-Mar-2014)

Ref Expression
Assertion df-sec sec=xy|cosy01cosx

Detailed syntax breakdown

Step Hyp Ref Expression
0 csec classsec
1 vx setvarx
2 vy setvary
3 cc class
4 ccos classcos
5 2 cv setvary
6 5 4 cfv classcosy
7 cc0 class0
8 6 7 wne wffcosy0
9 8 2 3 crab classy|cosy0
10 c1 class1
11 cdiv class÷
12 1 cv setvarx
13 12 4 cfv classcosx
14 10 13 11 co class1cosx
15 1 9 14 cmpt classxy|cosy01cosx
16 0 15 wceq wffsec=xy|cosy01cosx