Metamath Proof Explorer


Definition df-singles

Description: Define the class of all singletons. See elsingles for membership. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Assertion df-singles βŠ’π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œ=ranβ‘π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡

Detailed syntax breakdown

Step Hyp Ref Expression
0 csingles classπ–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œ
1 csingle classπ–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡
2 1 crn classranβ‘π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡
3 0 2 wceq wffπ–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œ=ranβ‘π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡