Metamath Proof Explorer


Theorem elsingles

Description: Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Assertion elsingles A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 x A = x

Proof

Step Hyp Ref Expression
1 elex A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 A V
2 snex x V
3 eleq1 A = x A V x V
4 2 3 mpbiri A = x A V
5 4 exlimiv x A = x A V
6 eleq1 y = A y 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
7 eqeq1 y = A y = x A = x
8 7 exbidv y = A x y = x x A = x
9 df-singles 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 = ran 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
10 9 eleq2i y 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 y ran 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
11 vex y V
12 11 elrn y ran 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y
13 vex x V
14 13 11 brsingle x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y y = x
15 14 exbii x x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x y = x
16 10 12 15 3bitri y 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 x y = x
17 6 8 16 vtoclbg A V A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 x A = x
18 1 5 17 pm5.21nii A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌 x A = x