Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
elsingles
Next ⟩
fnsingle
Metamath Proof Explorer
Ascii
Unicode
Theorem
elsingles
Description:
Membership in the class of all singletons.
(Contributed by
Scott Fenton
, 19-Feb-2013)
Ref
Expression
Assertion
elsingles
⊢
A
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
↔
∃
x
A
=
x
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
A
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
→
A
∈
V
2
snex
⊢
x
∈
V
3
eleq1
⊢
A
=
x
→
A
∈
V
↔
x
∈
V
4
2
3
mpbiri
⊢
A
=
x
→
A
∈
V
5
4
exlimiv
⊢
∃
x
A
=
x
→
A
∈
V
6
eleq1
⊢
y
=
A
→
y
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
↔
A
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
7
eqeq1
⊢
y
=
A
→
y
=
x
↔
A
=
x
8
7
exbidv
⊢
y
=
A
→
∃
x
y
=
x
↔
∃
x
A
=
x
9
df-singles
⊢
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
=
ran
⁡
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
10
9
eleq2i
⊢
y
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
↔
y
∈
ran
⁡
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
11
vex
⊢
y
∈
V
12
11
elrn
⊢
y
∈
ran
⁡
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
↔
∃
x
x
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
y
13
vex
⊢
x
∈
V
14
13
11
brsingle
⊢
x
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
y
↔
y
=
x
15
14
exbii
⊢
∃
x
x
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
y
↔
∃
x
y
=
x
16
10
12
15
3bitri
⊢
y
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
↔
∃
x
y
=
x
17
6
8
16
vtoclbg
⊢
A
∈
V
→
A
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
↔
∃
x
A
=
x
18
1
5
17
pm5.21nii
⊢
A
∈
𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇𝗌
↔
∃
x
A
=
x