Metamath Proof Explorer


Theorem fnsingle

Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fnsingle 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Fn V

Proof

Step Hyp Ref Expression
1 difss V × V ran V E I V V × V
2 df-rel Rel V × V ran V E I V V × V ran V E I V V × V
3 1 2 mpbir Rel V × V ran V E I V
4 df-singleton 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 = V × V ran V E I V
5 4 releqi Rel 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Rel V × V ran V E I V
6 3 5 mpbir Rel 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
7 vex x V
8 vex y V
9 7 8 brsingle x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y y = x
10 vex z V
11 7 10 brsingle x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 z z = x
12 eqtr3 y = x z = x y = z
13 9 11 12 syl2anb x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 z y = z
14 13 ax-gen z x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 z y = z
15 14 gen2 x y z x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 z y = z
16 dffun2 Fun 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Rel 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x y z x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 z y = z
17 6 15 16 mpbir2an Fun 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
18 eqv dom 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 = V x x dom 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
19 eqid x = x
20 snex x V
21 7 20 brsingle x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x = x
22 19 21 mpbir x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x
23 breq2 y = x x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x
24 20 23 spcev x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y
25 22 24 ax-mp y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y
26 7 eldm x dom 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 y
27 25 26 mpbir x dom 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇
28 18 27 mpgbir dom 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 = V
29 df-fn 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Fn V Fun 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 dom 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 = V
30 17 28 29 mpbir2an 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Fn V