Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
|- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) C_ ( _V X. _V ) |
2 |
|
df-rel |
|- ( Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) <-> ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) C_ ( _V X. _V ) ) |
3 |
1 2
|
mpbir |
|- Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
4 |
|
df-singleton |
|- Singleton = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
5 |
4
|
releqi |
|- ( Rel Singleton <-> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) ) |
6 |
3 5
|
mpbir |
|- Rel Singleton |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
brsingle |
|- ( x Singleton y <-> y = { x } ) |
10 |
|
vex |
|- z e. _V |
11 |
7 10
|
brsingle |
|- ( x Singleton z <-> z = { x } ) |
12 |
|
eqtr3 |
|- ( ( y = { x } /\ z = { x } ) -> y = z ) |
13 |
9 11 12
|
syl2anb |
|- ( ( x Singleton y /\ x Singleton z ) -> y = z ) |
14 |
13
|
ax-gen |
|- A. z ( ( x Singleton y /\ x Singleton z ) -> y = z ) |
15 |
14
|
gen2 |
|- A. x A. y A. z ( ( x Singleton y /\ x Singleton z ) -> y = z ) |
16 |
|
dffun2 |
|- ( Fun Singleton <-> ( Rel Singleton /\ A. x A. y A. z ( ( x Singleton y /\ x Singleton z ) -> y = z ) ) ) |
17 |
6 15 16
|
mpbir2an |
|- Fun Singleton |
18 |
|
eqv |
|- ( dom Singleton = _V <-> A. x x e. dom Singleton ) |
19 |
|
eqid |
|- { x } = { x } |
20 |
|
snex |
|- { x } e. _V |
21 |
7 20
|
brsingle |
|- ( x Singleton { x } <-> { x } = { x } ) |
22 |
19 21
|
mpbir |
|- x Singleton { x } |
23 |
|
breq2 |
|- ( y = { x } -> ( x Singleton y <-> x Singleton { x } ) ) |
24 |
20 23
|
spcev |
|- ( x Singleton { x } -> E. y x Singleton y ) |
25 |
22 24
|
ax-mp |
|- E. y x Singleton y |
26 |
7
|
eldm |
|- ( x e. dom Singleton <-> E. y x Singleton y ) |
27 |
25 26
|
mpbir |
|- x e. dom Singleton |
28 |
18 27
|
mpgbir |
|- dom Singleton = _V |
29 |
|
df-fn |
|- ( Singleton Fn _V <-> ( Fun Singleton /\ dom Singleton = _V ) ) |
30 |
17 28 29
|
mpbir2an |
|- Singleton Fn _V |