Description: Define the singleton function. See brsingle for its value. (Contributed by Scott Fenton, 4-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-singleton | |- Singleton = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csingle | |- Singleton |
|
1 | cvv | |- _V |
|
2 | 1 1 | cxp | |- ( _V X. _V ) |
3 | cep | |- _E |
|
4 | 1 3 | ctxp | |- ( _V (x) _E ) |
5 | cid | |- _I |
|
6 | 5 1 | ctxp | |- ( _I (x) _V ) |
7 | 4 6 | csymdif | |- ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) |
8 | 7 | crn | |- ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) |
9 | 2 8 | cdif | |- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
10 | 0 9 | wceq | |- Singleton = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |