Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brsingle.1 | |- A e. _V |
|
| brsingle.2 | |- B e. _V |
||
| Assertion | brsingle | |- ( A Singleton B <-> B = { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsingle.1 | |- A e. _V |
|
| 2 | brsingle.2 | |- B e. _V |
|
| 3 | df-singleton | |- Singleton = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) ) |
|
| 4 | brxp | |- ( A ( _V X. _V ) B <-> ( A e. _V /\ B e. _V ) ) |
|
| 5 | 1 2 4 | mpbir2an | |- A ( _V X. _V ) B |
| 6 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 7 | 1 | ideq | |- ( x _I A <-> x = A ) |
| 8 | 6 7 | bitr4i | |- ( x e. { A } <-> x _I A ) |
| 9 | 1 2 3 5 8 | brtxpsd3 | |- ( A Singleton B <-> B = { A } ) |