Metamath Proof Explorer


Theorem brsingle

Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brsingle.1
|- A e. _V
brsingle.2
|- B e. _V
Assertion brsingle
|- ( A Singleton B <-> B = { A } )

Proof

Step Hyp Ref Expression
1 brsingle.1
 |-  A e. _V
2 brsingle.2
 |-  B e. _V
3 df-singleton
 |-  Singleton = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( _I (x) _V ) ) )
4 brxp
 |-  ( A ( _V X. _V ) B <-> ( A e. _V /\ B e. _V ) )
5 1 2 4 mpbir2an
 |-  A ( _V X. _V ) B
6 velsn
 |-  ( x e. { A } <-> x = A )
7 1 ideq
 |-  ( x _I A <-> x = A )
8 6 7 bitr4i
 |-  ( x e. { A } <-> x _I A )
9 1 2 3 5 8 brtxpsd3
 |-  ( A Singleton B <-> B = { A } )