Metamath Proof Explorer


Theorem brtxpsd3

Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Hypotheses brtxpsd2.1
|- A e. _V
brtxpsd2.2
|- B e. _V
brtxpsd2.3
|- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) )
brtxpsd2.4
|- A C B
brtxpsd3.5
|- ( x e. X <-> x S A )
Assertion brtxpsd3
|- ( A R B <-> B = X )

Proof

Step Hyp Ref Expression
1 brtxpsd2.1
 |-  A e. _V
2 brtxpsd2.2
 |-  B e. _V
3 brtxpsd2.3
 |-  R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) )
4 brtxpsd2.4
 |-  A C B
5 brtxpsd3.5
 |-  ( x e. X <-> x S A )
6 5 bibi2i
 |-  ( ( x e. B <-> x e. X ) <-> ( x e. B <-> x S A ) )
7 6 albii
 |-  ( A. x ( x e. B <-> x e. X ) <-> A. x ( x e. B <-> x S A ) )
8 dfcleq
 |-  ( B = X <-> A. x ( x e. B <-> x e. X ) )
9 1 2 3 4 brtxpsd2
 |-  ( A R B <-> A. x ( x e. B <-> x S A ) )
10 7 8 9 3bitr4ri
 |-  ( A R B <-> B = X )