Metamath Proof Explorer


Theorem brtxpsd3

Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Hypotheses brtxpsd2.1 A V
brtxpsd2.2 B V
brtxpsd2.3 R = C ran V E S V
brtxpsd2.4 A C B
brtxpsd3.5 x X x S A
Assertion brtxpsd3 A R B B = X

Proof

Step Hyp Ref Expression
1 brtxpsd2.1 A V
2 brtxpsd2.2 B V
3 brtxpsd2.3 R = C ran V E S V
4 brtxpsd2.4 A C B
5 brtxpsd3.5 x X x S A
6 5 bibi2i x B x X x B x S A
7 6 albii x x B x X x x B x S A
8 dfcleq B = X x x B x X
9 1 2 3 4 brtxpsd2 A R B x x B x S A
10 7 8 9 3bitr4ri A R B B = X