Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brtxpsd2.1 | ⊢ 𝐴 ∈ V | |
| brtxpsd2.2 | ⊢ 𝐵 ∈ V | ||
| brtxpsd2.3 | ⊢ 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) | ||
| brtxpsd2.4 | ⊢ 𝐴 𝐶 𝐵 | ||
| brtxpsd3.5 | ⊢ ( 𝑥 ∈ 𝑋 ↔ 𝑥 𝑆 𝐴 ) | ||
| Assertion | brtxpsd3 | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐵 = 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brtxpsd2.1 | ⊢ 𝐴 ∈ V | |
| 2 | brtxpsd2.2 | ⊢ 𝐵 ∈ V | |
| 3 | brtxpsd2.3 | ⊢ 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) | |
| 4 | brtxpsd2.4 | ⊢ 𝐴 𝐶 𝐵 | |
| 5 | brtxpsd3.5 | ⊢ ( 𝑥 ∈ 𝑋 ↔ 𝑥 𝑆 𝐴 ) | |
| 6 | 5 | bibi2i | ⊢ ( ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋 ) ↔ ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) | 
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) | 
| 8 | dfcleq | ⊢ ( 𝐵 = 𝑋 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝑋 ) ) | |
| 9 | 1 2 3 4 | brtxpsd2 | ⊢ ( 𝐴 𝑅 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) | 
| 10 | 7 8 9 | 3bitr4ri | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐵 = 𝑋 ) |