Metamath Proof Explorer


Theorem brtxpsd3

Description: A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Hypotheses brtxpsd2.1 𝐴 ∈ V
brtxpsd2.2 𝐵 ∈ V
brtxpsd2.3 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) )
brtxpsd2.4 𝐴 𝐶 𝐵
brtxpsd3.5 ( 𝑥𝑋𝑥 𝑆 𝐴 )
Assertion brtxpsd3 ( 𝐴 𝑅 𝐵𝐵 = 𝑋 )

Proof

Step Hyp Ref Expression
1 brtxpsd2.1 𝐴 ∈ V
2 brtxpsd2.2 𝐵 ∈ V
3 brtxpsd2.3 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) )
4 brtxpsd2.4 𝐴 𝐶 𝐵
5 brtxpsd3.5 ( 𝑥𝑋𝑥 𝑆 𝐴 )
6 5 bibi2i ( ( 𝑥𝐵𝑥𝑋 ) ↔ ( 𝑥𝐵𝑥 𝑆 𝐴 ) )
7 6 albii ( ∀ 𝑥 ( 𝑥𝐵𝑥𝑋 ) ↔ ∀ 𝑥 ( 𝑥𝐵𝑥 𝑆 𝐴 ) )
8 dfcleq ( 𝐵 = 𝑋 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥𝑋 ) )
9 1 2 3 4 brtxpsd2 ( 𝐴 𝑅 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥 𝑆 𝐴 ) )
10 7 8 9 3bitr4ri ( 𝐴 𝑅 𝐵𝐵 = 𝑋 )