Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | relbigcup | ⊢ Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp | ⊢ Rel ( V × V ) | |
2 | reldif | ⊢ ( Rel ( V × V ) → Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) |
4 | df-bigcup | ⊢ Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) | |
5 | 4 | releqi | ⊢ ( Rel Bigcup ↔ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) ) |
6 | 3 5 | mpbir | ⊢ Rel Bigcup |