Metamath Proof Explorer


Theorem relbigcup

Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion relbigcup Rel Bigcup

Proof

Step Hyp Ref Expression
1 relxp Rel ( V × V )
2 reldif ( Rel ( V × V ) → Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) )
3 1 2 ax-mp Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) )
4 df-bigcup Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) )
5 4 releqi ( Rel Bigcup ↔ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) )
6 3 5 mpbir Rel Bigcup