Metamath Proof Explorer


Theorem relbigcup

Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion relbigcup
|- Rel Bigcup

Proof

Step Hyp Ref Expression
1 relxp
 |-  Rel ( _V X. _V )
2 reldif
 |-  ( Rel ( _V X. _V ) -> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) )
3 1 2 ax-mp
 |-  Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) )
4 df-bigcup
 |-  Bigcup = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) )
5 4 releqi
 |-  ( Rel Bigcup <-> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) )
6 3 5 mpbir
 |-  Rel Bigcup