Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | relbigcup | |- Rel Bigcup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp | |- Rel ( _V X. _V ) |
|
2 | reldif | |- ( Rel ( _V X. _V ) -> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) ) |
|
3 | 1 2 | ax-mp | |- Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) |
4 | df-bigcup | |- Bigcup = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) |
|
5 | 4 | releqi | |- ( Rel Bigcup <-> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) ) |
6 | 3 5 | mpbir | |- Rel Bigcup |