Metamath Proof Explorer


Theorem relbigcup

Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion relbigcup ⊒Relβ‘π–‘π—‚π—€π–Όπ—Žπ—‰

Proof

Step Hyp Ref Expression
1 relxp ⊒Rel⁑VΓ—V
2 reldif ⊒Rel⁑VΓ—Vβ†’Rel⁑VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V
3 1 2 ax-mp ⊒Rel⁑VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V
4 df-bigcup βŠ’π–‘π—‚π—€π–Όπ—Žπ—‰=VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V
5 4 releqi ⊒Relβ‘π–‘π—‚π—€π–Όπ—Žπ—‰β†”Rel⁑VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V
6 3 5 mpbir ⊒Relβ‘π–‘π—‚π—€π–Όπ—Žπ—‰