Metamath Proof Explorer


Theorem relbigcup

Description: The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion relbigcup Rel 𝖡𝗂𝗀𝖼𝗎𝗉

Proof

Step Hyp Ref Expression
1 relxp Rel V × V
2 reldif Rel V × V Rel V × V ran V E E E V
3 1 2 ax-mp Rel V × V ran V E E E V
4 df-bigcup 𝖡𝗂𝗀𝖼𝗎𝗉 = V × V ran V E E E V
5 4 releqi Rel 𝖡𝗂𝗀𝖼𝗎𝗉 Rel V × V ran V E E E V
6 3 5 mpbir Rel 𝖡𝗂𝗀𝖼𝗎𝗉