Metamath Proof Explorer
Description: Define the Bigcup function, which, per fvbigcup , carries a set to its
union. (Contributed by Scott Fenton, 11-Apr-2012)
|
|
Ref |
Expression |
|
Assertion |
df-bigcup |
|
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cbigcup |
|
1 |
|
cvv |
|
2 |
1 1
|
cxp |
|
3 |
|
cep |
|
4 |
1 3
|
ctxp |
|
5 |
3 3
|
ccom |
|
6 |
5 1
|
ctxp |
|
7 |
4 6
|
csymdif |
|
8 |
7
|
crn |
|
9 |
2 8
|
cdif |
|
10 |
0 9
|
wceq |
|