Metamath Proof Explorer


Definition df-bigcup

Description: Define the Bigcup function, which, per fvbigcup , carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Assertion df-bigcup βŠ’π–‘π—‚π—€π–Όπ—Žπ—‰=VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbigcup classπ–‘π—‚π—€π–Όπ—Žπ—‰
1 cvv classV
2 1 1 cxp classVΓ—V
3 cep classE
4 1 3 ctxp classVβŠ—E
5 3 3 ccom classE∘E
6 5 1 ctxp classE∘EβŠ—V
7 4 6 csymdif classVβŠ—Eβˆ†E∘EβŠ—V
8 7 crn classran⁑VβŠ—Eβˆ†E∘EβŠ—V
9 2 8 cdif classVΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V
10 0 9 wceq wffπ–‘π—‚π—€π–Όπ—Žπ—‰=VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†E∘EβŠ—V