Metamath Proof Explorer


Definition df-txp

Description: Define the tail cross of two classes. Membership in this class is defined by txpss3v and brtxp . (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion df-txp A B = 1 st V × V -1 A 2 nd V × V -1 B

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cB class B
2 0 1 ctxp class A B
3 c1st class 1 st
4 cvv class V
5 4 4 cxp class V × V
6 3 5 cres class 1 st V × V
7 6 ccnv class 1 st V × V -1
8 7 0 ccom class 1 st V × V -1 A
9 c2nd class 2 nd
10 9 5 cres class 2 nd V × V
11 10 ccnv class 2 nd V × V -1
12 11 1 ccom class 2 nd V × V -1 B
13 8 12 cin class 1 st V × V -1 A 2 nd V × V -1 B
14 2 13 wceq wff A B = 1 st V × V -1 A 2 nd V × V -1 B