Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v , this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | brtxp.1 | |
|
brtxp.2 | |
||
brtxp.3 | |
||
Assertion | brtxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brtxp.1 | |
|
2 | brtxp.2 | |
|
3 | brtxp.3 | |
|
4 | df-txp | |
|
5 | 4 | breqi | |
6 | brin | |
|
7 | opex | |
|
8 | 1 7 | brco | |
9 | vex | |
|
10 | 9 7 | brcnv | |
11 | 2 3 | opelvv | |
12 | 9 | brresi | |
13 | 11 12 | mpbiran | |
14 | 2 3 | br1steq | |
15 | 10 13 14 | 3bitri | |
16 | 15 | anbi1ci | |
17 | 16 | exbii | |
18 | breq2 | |
|
19 | 2 18 | ceqsexv | |
20 | 8 17 19 | 3bitri | |
21 | 1 7 | brco | |
22 | vex | |
|
23 | 22 7 | brcnv | |
24 | 22 | brresi | |
25 | 11 24 | mpbiran | |
26 | 2 3 | br2ndeq | |
27 | 23 25 26 | 3bitri | |
28 | 27 | anbi1ci | |
29 | 28 | exbii | |
30 | breq2 | |
|
31 | 3 30 | ceqsexv | |
32 | 21 29 31 | 3bitri | |
33 | 20 32 | anbi12i | |
34 | 5 6 33 | 3bitri | |