Metamath Proof Explorer


Theorem brtxp

Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v , this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses brtxp.1 XV
brtxp.2 YV
brtxp.3 ZV
Assertion brtxp XABYZXAYXBZ

Proof

Step Hyp Ref Expression
1 brtxp.1 XV
2 brtxp.2 YV
3 brtxp.3 ZV
4 df-txp AB=1stV×V-1A2ndV×V-1B
5 4 breqi XABYZX1stV×V-1A2ndV×V-1BYZ
6 brin X1stV×V-1A2ndV×V-1BYZX1stV×V-1AYZX2ndV×V-1BYZ
7 opex YZV
8 1 7 brco X1stV×V-1AYZyXAyy1stV×V-1YZ
9 vex yV
10 9 7 brcnv y1stV×V-1YZYZ1stV×Vy
11 2 3 opelvv YZV×V
12 9 brresi YZ1stV×VyYZV×VYZ1sty
13 11 12 mpbiran YZ1stV×VyYZ1sty
14 2 3 br1steq YZ1styy=Y
15 10 13 14 3bitri y1stV×V-1YZy=Y
16 15 anbi1ci XAyy1stV×V-1YZy=YXAy
17 16 exbii yXAyy1stV×V-1YZyy=YXAy
18 breq2 y=YXAyXAY
19 2 18 ceqsexv yy=YXAyXAY
20 8 17 19 3bitri X1stV×V-1AYZXAY
21 1 7 brco X2ndV×V-1BYZzXBzz2ndV×V-1YZ
22 vex zV
23 22 7 brcnv z2ndV×V-1YZYZ2ndV×Vz
24 22 brresi YZ2ndV×VzYZV×VYZ2ndz
25 11 24 mpbiran YZ2ndV×VzYZ2ndz
26 2 3 br2ndeq YZ2ndzz=Z
27 23 25 26 3bitri z2ndV×V-1YZz=Z
28 27 anbi1ci XBzz2ndV×V-1YZz=ZXBz
29 28 exbii zXBzz2ndV×V-1YZzz=ZXBz
30 breq2 z=ZXBzXBZ
31 3 30 ceqsexv zz=ZXBzXBZ
32 21 29 31 3bitri X2ndV×V-1BYZXBZ
33 20 32 anbi12i X1stV×V-1AYZX2ndV×V-1BYZXAYXBZ
34 5 6 33 3bitri XABYZXAYXBZ