| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brtxp.1 |
|- X e. _V |
| 2 |
|
brtxp.2 |
|- Y e. _V |
| 3 |
|
brtxp.3 |
|- Z e. _V |
| 4 |
|
df-txp |
|- ( A (x) B ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) |
| 5 |
4
|
breqi |
|- ( X ( A (x) B ) <. Y , Z >. <-> X ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) <. Y , Z >. ) |
| 6 |
|
brin |
|- ( X ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) <. Y , Z >. <-> ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. /\ X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. ) ) |
| 7 |
|
opex |
|- <. Y , Z >. e. _V |
| 8 |
1 7
|
brco |
|- ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. <-> E. y ( X A y /\ y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. ) ) |
| 9 |
|
vex |
|- y e. _V |
| 10 |
9 7
|
brcnv |
|- ( y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. <-> <. Y , Z >. ( 1st |` ( _V X. _V ) ) y ) |
| 11 |
2 3
|
opelvv |
|- <. Y , Z >. e. ( _V X. _V ) |
| 12 |
9
|
brresi |
|- ( <. Y , Z >. ( 1st |` ( _V X. _V ) ) y <-> ( <. Y , Z >. e. ( _V X. _V ) /\ <. Y , Z >. 1st y ) ) |
| 13 |
11 12
|
mpbiran |
|- ( <. Y , Z >. ( 1st |` ( _V X. _V ) ) y <-> <. Y , Z >. 1st y ) |
| 14 |
2 3
|
br1steq |
|- ( <. Y , Z >. 1st y <-> y = Y ) |
| 15 |
10 13 14
|
3bitri |
|- ( y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. <-> y = Y ) |
| 16 |
15
|
anbi1ci |
|- ( ( X A y /\ y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. ) <-> ( y = Y /\ X A y ) ) |
| 17 |
16
|
exbii |
|- ( E. y ( X A y /\ y `' ( 1st |` ( _V X. _V ) ) <. Y , Z >. ) <-> E. y ( y = Y /\ X A y ) ) |
| 18 |
|
breq2 |
|- ( y = Y -> ( X A y <-> X A Y ) ) |
| 19 |
2 18
|
ceqsexv |
|- ( E. y ( y = Y /\ X A y ) <-> X A Y ) |
| 20 |
8 17 19
|
3bitri |
|- ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. <-> X A Y ) |
| 21 |
1 7
|
brco |
|- ( X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. <-> E. z ( X B z /\ z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. ) ) |
| 22 |
|
vex |
|- z e. _V |
| 23 |
22 7
|
brcnv |
|- ( z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. <-> <. Y , Z >. ( 2nd |` ( _V X. _V ) ) z ) |
| 24 |
22
|
brresi |
|- ( <. Y , Z >. ( 2nd |` ( _V X. _V ) ) z <-> ( <. Y , Z >. e. ( _V X. _V ) /\ <. Y , Z >. 2nd z ) ) |
| 25 |
11 24
|
mpbiran |
|- ( <. Y , Z >. ( 2nd |` ( _V X. _V ) ) z <-> <. Y , Z >. 2nd z ) |
| 26 |
2 3
|
br2ndeq |
|- ( <. Y , Z >. 2nd z <-> z = Z ) |
| 27 |
23 25 26
|
3bitri |
|- ( z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. <-> z = Z ) |
| 28 |
27
|
anbi1ci |
|- ( ( X B z /\ z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. ) <-> ( z = Z /\ X B z ) ) |
| 29 |
28
|
exbii |
|- ( E. z ( X B z /\ z `' ( 2nd |` ( _V X. _V ) ) <. Y , Z >. ) <-> E. z ( z = Z /\ X B z ) ) |
| 30 |
|
breq2 |
|- ( z = Z -> ( X B z <-> X B Z ) ) |
| 31 |
3 30
|
ceqsexv |
|- ( E. z ( z = Z /\ X B z ) <-> X B Z ) |
| 32 |
21 29 31
|
3bitri |
|- ( X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. <-> X B Z ) |
| 33 |
20 32
|
anbi12i |
|- ( ( X ( `' ( 1st |` ( _V X. _V ) ) o. A ) <. Y , Z >. /\ X ( `' ( 2nd |` ( _V X. _V ) ) o. B ) <. Y , Z >. ) <-> ( X A Y /\ X B Z ) ) |
| 34 |
5 6 33
|
3bitri |
|- ( X ( A (x) B ) <. Y , Z >. <-> ( X A Y /\ X B Z ) ) |