Step |
Hyp |
Ref |
Expression |
1 |
|
brtxp2.1 |
|- A e. _V |
2 |
|
txpss3v |
|- ( R (x) S ) C_ ( _V X. ( _V X. _V ) ) |
3 |
2
|
brel |
|- ( A ( R (x) S ) B -> ( A e. _V /\ B e. ( _V X. _V ) ) ) |
4 |
3
|
simprd |
|- ( A ( R (x) S ) B -> B e. ( _V X. _V ) ) |
5 |
|
elvv |
|- ( B e. ( _V X. _V ) <-> E. x E. y B = <. x , y >. ) |
6 |
4 5
|
sylib |
|- ( A ( R (x) S ) B -> E. x E. y B = <. x , y >. ) |
7 |
6
|
pm4.71ri |
|- ( A ( R (x) S ) B <-> ( E. x E. y B = <. x , y >. /\ A ( R (x) S ) B ) ) |
8 |
|
19.41vv |
|- ( E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) B ) <-> ( E. x E. y B = <. x , y >. /\ A ( R (x) S ) B ) ) |
9 |
7 8
|
bitr4i |
|- ( A ( R (x) S ) B <-> E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) B ) ) |
10 |
|
breq2 |
|- ( B = <. x , y >. -> ( A ( R (x) S ) B <-> A ( R (x) S ) <. x , y >. ) ) |
11 |
10
|
pm5.32i |
|- ( ( B = <. x , y >. /\ A ( R (x) S ) B ) <-> ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) ) |
12 |
11
|
2exbii |
|- ( E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) B ) <-> E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) ) |
13 |
|
vex |
|- x e. _V |
14 |
|
vex |
|- y e. _V |
15 |
1 13 14
|
brtxp |
|- ( A ( R (x) S ) <. x , y >. <-> ( A R x /\ A S y ) ) |
16 |
15
|
anbi2i |
|- ( ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) |
17 |
|
3anass |
|- ( ( B = <. x , y >. /\ A R x /\ A S y ) <-> ( B = <. x , y >. /\ ( A R x /\ A S y ) ) ) |
18 |
16 17
|
bitr4i |
|- ( ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) <-> ( B = <. x , y >. /\ A R x /\ A S y ) ) |
19 |
18
|
2exbii |
|- ( E. x E. y ( B = <. x , y >. /\ A ( R (x) S ) <. x , y >. ) <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) |
20 |
9 12 19
|
3bitri |
|- ( A ( R (x) S ) B <-> E. x E. y ( B = <. x , y >. /\ A R x /\ A S y ) ) |