Metamath Proof Explorer


Theorem brtxp

Description: Characterize a ternary relation over a tail Cartesian product. Together with txpss3v , this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses brtxp.1 𝑋 ∈ V
brtxp.2 𝑌 ∈ V
brtxp.3 𝑍 ∈ V
Assertion brtxp ( 𝑋 ( 𝐴𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ( 𝑋 𝐴 𝑌𝑋 𝐵 𝑍 ) )

Proof

Step Hyp Ref Expression
1 brtxp.1 𝑋 ∈ V
2 brtxp.2 𝑌 ∈ V
3 brtxp.3 𝑍 ∈ V
4 df-txp ( 𝐴𝐵 ) = ( ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) )
5 4 breqi ( 𝑋 ( 𝐴𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ 𝑋 ( ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) ⟨ 𝑌 , 𝑍 ⟩ )
6 brin ( 𝑋 ( ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ( 𝑋 ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ⟨ 𝑌 , 𝑍 ⟩ ∧ 𝑋 ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ) )
7 opex 𝑌 , 𝑍 ⟩ ∈ V
8 1 7 brco ( 𝑋 ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ∃ 𝑦 ( 𝑋 𝐴 𝑦𝑦 ( 1st ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ) )
9 vex 𝑦 ∈ V
10 9 7 brcnv ( 𝑦 ( 1st ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ⟨ 𝑌 , 𝑍 ⟩ ( 1st ↾ ( V × V ) ) 𝑦 )
11 2 3 opelvv 𝑌 , 𝑍 ⟩ ∈ ( V × V )
12 9 brresi ( ⟨ 𝑌 , 𝑍 ⟩ ( 1st ↾ ( V × V ) ) 𝑦 ↔ ( ⟨ 𝑌 , 𝑍 ⟩ ∈ ( V × V ) ∧ ⟨ 𝑌 , 𝑍 ⟩ 1st 𝑦 ) )
13 11 12 mpbiran ( ⟨ 𝑌 , 𝑍 ⟩ ( 1st ↾ ( V × V ) ) 𝑦 ↔ ⟨ 𝑌 , 𝑍 ⟩ 1st 𝑦 )
14 2 3 br1steq ( ⟨ 𝑌 , 𝑍 ⟩ 1st 𝑦𝑦 = 𝑌 )
15 10 13 14 3bitri ( 𝑦 ( 1st ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ↔ 𝑦 = 𝑌 )
16 15 anbi1ci ( ( 𝑋 𝐴 𝑦𝑦 ( 1st ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ) ↔ ( 𝑦 = 𝑌𝑋 𝐴 𝑦 ) )
17 16 exbii ( ∃ 𝑦 ( 𝑋 𝐴 𝑦𝑦 ( 1st ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ) ↔ ∃ 𝑦 ( 𝑦 = 𝑌𝑋 𝐴 𝑦 ) )
18 breq2 ( 𝑦 = 𝑌 → ( 𝑋 𝐴 𝑦𝑋 𝐴 𝑌 ) )
19 2 18 ceqsexv ( ∃ 𝑦 ( 𝑦 = 𝑌𝑋 𝐴 𝑦 ) ↔ 𝑋 𝐴 𝑌 )
20 8 17 19 3bitri ( 𝑋 ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ 𝑋 𝐴 𝑌 )
21 1 7 brco ( 𝑋 ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ∃ 𝑧 ( 𝑋 𝐵 𝑧𝑧 ( 2nd ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ) )
22 vex 𝑧 ∈ V
23 22 7 brcnv ( 𝑧 ( 2nd ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ⟨ 𝑌 , 𝑍 ⟩ ( 2nd ↾ ( V × V ) ) 𝑧 )
24 22 brresi ( ⟨ 𝑌 , 𝑍 ⟩ ( 2nd ↾ ( V × V ) ) 𝑧 ↔ ( ⟨ 𝑌 , 𝑍 ⟩ ∈ ( V × V ) ∧ ⟨ 𝑌 , 𝑍 ⟩ 2nd 𝑧 ) )
25 11 24 mpbiran ( ⟨ 𝑌 , 𝑍 ⟩ ( 2nd ↾ ( V × V ) ) 𝑧 ↔ ⟨ 𝑌 , 𝑍 ⟩ 2nd 𝑧 )
26 2 3 br2ndeq ( ⟨ 𝑌 , 𝑍 ⟩ 2nd 𝑧𝑧 = 𝑍 )
27 23 25 26 3bitri ( 𝑧 ( 2nd ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ↔ 𝑧 = 𝑍 )
28 27 anbi1ci ( ( 𝑋 𝐵 𝑧𝑧 ( 2nd ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ) ↔ ( 𝑧 = 𝑍𝑋 𝐵 𝑧 ) )
29 28 exbii ( ∃ 𝑧 ( 𝑋 𝐵 𝑧𝑧 ( 2nd ↾ ( V × V ) ) ⟨ 𝑌 , 𝑍 ⟩ ) ↔ ∃ 𝑧 ( 𝑧 = 𝑍𝑋 𝐵 𝑧 ) )
30 breq2 ( 𝑧 = 𝑍 → ( 𝑋 𝐵 𝑧𝑋 𝐵 𝑍 ) )
31 3 30 ceqsexv ( ∃ 𝑧 ( 𝑧 = 𝑍𝑋 𝐵 𝑧 ) ↔ 𝑋 𝐵 𝑍 )
32 21 29 31 3bitri ( 𝑋 ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ 𝑋 𝐵 𝑍 )
33 20 32 anbi12i ( ( 𝑋 ( ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ⟨ 𝑌 , 𝑍 ⟩ ∧ 𝑋 ( ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ) ↔ ( 𝑋 𝐴 𝑌𝑋 𝐵 𝑍 ) )
34 5 6 33 3bitri ( 𝑋 ( 𝐴𝐵 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ( 𝑋 𝐴 𝑌𝑋 𝐵 𝑍 ) )