| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brtxp.1 |
⊢ 𝑋 ∈ V |
| 2 |
|
brtxp.2 |
⊢ 𝑌 ∈ V |
| 3 |
|
brtxp.3 |
⊢ 𝑍 ∈ V |
| 4 |
|
df-txp |
⊢ ( 𝐴 ⊗ 𝐵 ) = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) |
| 5 |
4
|
breqi |
⊢ ( 𝑋 ( 𝐴 ⊗ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ 𝑋 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) 〈 𝑌 , 𝑍 〉 ) |
| 6 |
|
brin |
⊢ ( 𝑋 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) ) 〈 𝑌 , 𝑍 〉 ↔ ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ∧ 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ) ) |
| 7 |
|
opex |
⊢ 〈 𝑌 , 𝑍 〉 ∈ V |
| 8 |
1 7
|
brco |
⊢ ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ↔ ∃ 𝑦 ( 𝑋 𝐴 𝑦 ∧ 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ) |
| 9 |
|
vex |
⊢ 𝑦 ∈ V |
| 10 |
9 7
|
brcnv |
⊢ ( 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 〈 𝑌 , 𝑍 〉 ( 1st ↾ ( V × V ) ) 𝑦 ) |
| 11 |
2 3
|
opelvv |
⊢ 〈 𝑌 , 𝑍 〉 ∈ ( V × V ) |
| 12 |
9
|
brresi |
⊢ ( 〈 𝑌 , 𝑍 〉 ( 1st ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝑌 , 𝑍 〉 ∈ ( V × V ) ∧ 〈 𝑌 , 𝑍 〉 1st 𝑦 ) ) |
| 13 |
11 12
|
mpbiran |
⊢ ( 〈 𝑌 , 𝑍 〉 ( 1st ↾ ( V × V ) ) 𝑦 ↔ 〈 𝑌 , 𝑍 〉 1st 𝑦 ) |
| 14 |
2 3
|
br1steq |
⊢ ( 〈 𝑌 , 𝑍 〉 1st 𝑦 ↔ 𝑦 = 𝑌 ) |
| 15 |
10 13 14
|
3bitri |
⊢ ( 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 𝑦 = 𝑌 ) |
| 16 |
15
|
anbi1ci |
⊢ ( ( 𝑋 𝐴 𝑦 ∧ 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ( 𝑦 = 𝑌 ∧ 𝑋 𝐴 𝑦 ) ) |
| 17 |
16
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑋 𝐴 𝑦 ∧ 𝑦 ◡ ( 1st ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑋 𝐴 𝑦 ) ) |
| 18 |
|
breq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐴 𝑦 ↔ 𝑋 𝐴 𝑌 ) ) |
| 19 |
2 18
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑌 ∧ 𝑋 𝐴 𝑦 ) ↔ 𝑋 𝐴 𝑌 ) |
| 20 |
8 17 19
|
3bitri |
⊢ ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ↔ 𝑋 𝐴 𝑌 ) |
| 21 |
1 7
|
brco |
⊢ ( 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ ∃ 𝑧 ( 𝑋 𝐵 𝑧 ∧ 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ) |
| 22 |
|
vex |
⊢ 𝑧 ∈ V |
| 23 |
22 7
|
brcnv |
⊢ ( 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 〈 𝑌 , 𝑍 〉 ( 2nd ↾ ( V × V ) ) 𝑧 ) |
| 24 |
22
|
brresi |
⊢ ( 〈 𝑌 , 𝑍 〉 ( 2nd ↾ ( V × V ) ) 𝑧 ↔ ( 〈 𝑌 , 𝑍 〉 ∈ ( V × V ) ∧ 〈 𝑌 , 𝑍 〉 2nd 𝑧 ) ) |
| 25 |
11 24
|
mpbiran |
⊢ ( 〈 𝑌 , 𝑍 〉 ( 2nd ↾ ( V × V ) ) 𝑧 ↔ 〈 𝑌 , 𝑍 〉 2nd 𝑧 ) |
| 26 |
2 3
|
br2ndeq |
⊢ ( 〈 𝑌 , 𝑍 〉 2nd 𝑧 ↔ 𝑧 = 𝑍 ) |
| 27 |
23 25 26
|
3bitri |
⊢ ( 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ↔ 𝑧 = 𝑍 ) |
| 28 |
27
|
anbi1ci |
⊢ ( ( 𝑋 𝐵 𝑧 ∧ 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ( 𝑧 = 𝑍 ∧ 𝑋 𝐵 𝑧 ) ) |
| 29 |
28
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑋 𝐵 𝑧 ∧ 𝑧 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝑌 , 𝑍 〉 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑍 ∧ 𝑋 𝐵 𝑧 ) ) |
| 30 |
|
breq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 𝐵 𝑧 ↔ 𝑋 𝐵 𝑍 ) ) |
| 31 |
3 30
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑍 ∧ 𝑋 𝐵 𝑧 ) ↔ 𝑋 𝐵 𝑍 ) |
| 32 |
21 29 31
|
3bitri |
⊢ ( 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ 𝑋 𝐵 𝑍 ) |
| 33 |
20 32
|
anbi12i |
⊢ ( ( 𝑋 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝐴 ) 〈 𝑌 , 𝑍 〉 ∧ 𝑋 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝐵 ) 〈 𝑌 , 𝑍 〉 ) ↔ ( 𝑋 𝐴 𝑌 ∧ 𝑋 𝐵 𝑍 ) ) |
| 34 |
5 6 33
|
3bitri |
⊢ ( 𝑋 ( 𝐴 ⊗ 𝐵 ) 〈 𝑌 , 𝑍 〉 ↔ ( 𝑋 𝐴 𝑌 ∧ 𝑋 𝐵 𝑍 ) ) |