Step |
Hyp |
Ref |
Expression |
1 |
|
brbigcup.1 |
⊢ 𝐵 ∈ V |
2 |
|
relbigcup |
⊢ Rel Bigcup |
3 |
2
|
brrelex1i |
⊢ ( 𝐴 Bigcup 𝐵 → 𝐴 ∈ V ) |
4 |
|
eleq1 |
⊢ ( ∪ 𝐴 = 𝐵 → ( ∪ 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) |
5 |
1 4
|
mpbiri |
⊢ ( ∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V ) |
6 |
|
uniexb |
⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) |
7 |
5 6
|
sylibr |
⊢ ( ∪ 𝐴 = 𝐵 → 𝐴 ∈ V ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵 ) ) |
9 |
|
unieq |
⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵 ) ) |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
df-bigcup |
⊢ Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) |
13 |
|
brxp |
⊢ ( 𝑥 ( V × V ) 𝐵 ↔ ( 𝑥 ∈ V ∧ 𝐵 ∈ V ) ) |
14 |
11 1 13
|
mpbir2an |
⊢ 𝑥 ( V × V ) 𝐵 |
15 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
16 |
15
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ) |
17 |
|
vex |
⊢ 𝑦 ∈ V |
18 |
17 11
|
coep |
⊢ ( 𝑦 ( E ∘ E ) 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 E 𝑧 ) |
19 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ) |
20 |
16 18 19
|
3bitr4ri |
⊢ ( 𝑦 ∈ ∪ 𝑥 ↔ 𝑦 ( E ∘ E ) 𝑥 ) |
21 |
11 1 12 14 20
|
brtxpsd3 |
⊢ ( 𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥 ) |
22 |
|
eqcom |
⊢ ( 𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵 ) |
23 |
21 22
|
bitri |
⊢ ( 𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵 ) |
24 |
8 10 23
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( 𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵 ) ) |
25 |
3 7 24
|
pm5.21nii |
⊢ ( 𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵 ) |