Metamath Proof Explorer


Theorem brbigcup

Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012)

Ref Expression
Hypothesis brbigcup.1 𝐵 ∈ V
Assertion brbigcup ( 𝐴 Bigcup 𝐵 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 brbigcup.1 𝐵 ∈ V
2 relbigcup Rel Bigcup
3 2 brrelex1i ( 𝐴 Bigcup 𝐵𝐴 ∈ V )
4 eleq1 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) )
5 1 4 mpbiri ( 𝐴 = 𝐵 𝐴 ∈ V )
6 uniexb ( 𝐴 ∈ V ↔ 𝐴 ∈ V )
7 5 6 sylibr ( 𝐴 = 𝐵𝐴 ∈ V )
8 breq1 ( 𝑥 = 𝐴 → ( 𝑥 Bigcup 𝐵𝐴 Bigcup 𝐵 ) )
9 unieq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
10 9 eqeq1d ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 𝐴 = 𝐵 ) )
11 vex 𝑥 ∈ V
12 df-bigcup Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) )
13 brxp ( 𝑥 ( V × V ) 𝐵 ↔ ( 𝑥 ∈ V ∧ 𝐵 ∈ V ) )
14 11 1 13 mpbir2an 𝑥 ( V × V ) 𝐵
15 epel ( 𝑦 E 𝑧𝑦𝑧 )
16 15 rexbii ( ∃ 𝑧𝑥 𝑦 E 𝑧 ↔ ∃ 𝑧𝑥 𝑦𝑧 )
17 vex 𝑦 ∈ V
18 17 11 coep ( 𝑦 ( E ∘ E ) 𝑥 ↔ ∃ 𝑧𝑥 𝑦 E 𝑧 )
19 eluni2 ( 𝑦 𝑥 ↔ ∃ 𝑧𝑥 𝑦𝑧 )
20 16 18 19 3bitr4ri ( 𝑦 𝑥𝑦 ( E ∘ E ) 𝑥 )
21 11 1 12 14 20 brtxpsd3 ( 𝑥 Bigcup 𝐵𝐵 = 𝑥 )
22 eqcom ( 𝐵 = 𝑥 𝑥 = 𝐵 )
23 21 22 bitri ( 𝑥 Bigcup 𝐵 𝑥 = 𝐵 )
24 8 10 23 vtoclbg ( 𝐴 ∈ V → ( 𝐴 Bigcup 𝐵 𝐴 = 𝐵 ) )
25 3 7 24 pm5.21nii ( 𝐴 Bigcup 𝐵 𝐴 = 𝐵 )