Step |
Hyp |
Ref |
Expression |
1 |
|
relbigcup |
⊢ Rel Bigcup |
2 |
|
mptrel |
⊢ Rel ( 𝑥 ∈ V ↦ ∪ 𝑥 ) |
3 |
|
eqcom |
⊢ ( ∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦 ) |
4 |
|
vex |
⊢ 𝑧 ∈ V |
5 |
4
|
brbigcup |
⊢ ( 𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧 ) |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ V ↔ 𝑦 ∈ V ) ) |
8 |
|
unieq |
⊢ ( 𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦 ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥 ) ↔ ( 𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦 ) ) ) |
11 |
6
|
biantrur |
⊢ ( 𝑡 = ∪ 𝑦 ↔ ( 𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦 ) ) |
12 |
10 11
|
bitr4di |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥 ) ↔ 𝑡 = ∪ 𝑦 ) ) |
13 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑧 → ( 𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦 ) ) |
14 |
|
df-mpt |
⊢ ( 𝑥 ∈ V ↦ ∪ 𝑥 ) = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥 ) } |
15 |
6 4 12 13 14
|
brab |
⊢ ( 𝑦 ( 𝑥 ∈ V ↦ ∪ 𝑥 ) 𝑧 ↔ 𝑧 = ∪ 𝑦 ) |
16 |
3 5 15
|
3bitr4i |
⊢ ( 𝑦 Bigcup 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ∪ 𝑥 ) 𝑧 ) |
17 |
1 2 16
|
eqbrriv |
⊢ Bigcup = ( 𝑥 ∈ V ↦ ∪ 𝑥 ) |