Metamath Proof Explorer


Theorem dfbigcup2

Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion dfbigcup2 Bigcup = ( 𝑥 ∈ V ↦ 𝑥 )

Proof

Step Hyp Ref Expression
1 relbigcup Rel Bigcup
2 mptrel Rel ( 𝑥 ∈ V ↦ 𝑥 )
3 eqcom ( 𝑦 = 𝑧𝑧 = 𝑦 )
4 vex 𝑧 ∈ V
5 4 brbigcup ( 𝑦 Bigcup 𝑧 𝑦 = 𝑧 )
6 vex 𝑦 ∈ V
7 eleq1w ( 𝑥 = 𝑦 → ( 𝑥 ∈ V ↔ 𝑦 ∈ V ) )
8 unieq ( 𝑥 = 𝑦 𝑥 = 𝑦 )
9 8 eqeq2d ( 𝑥 = 𝑦 → ( 𝑡 = 𝑥𝑡 = 𝑦 ) )
10 7 9 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ V ∧ 𝑡 = 𝑥 ) ↔ ( 𝑦 ∈ V ∧ 𝑡 = 𝑦 ) ) )
11 6 biantrur ( 𝑡 = 𝑦 ↔ ( 𝑦 ∈ V ∧ 𝑡 = 𝑦 ) )
12 10 11 bitr4di ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ V ∧ 𝑡 = 𝑥 ) ↔ 𝑡 = 𝑦 ) )
13 eqeq1 ( 𝑡 = 𝑧 → ( 𝑡 = 𝑦𝑧 = 𝑦 ) )
14 df-mpt ( 𝑥 ∈ V ↦ 𝑥 ) = { ⟨ 𝑥 , 𝑡 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑡 = 𝑥 ) }
15 6 4 12 13 14 brab ( 𝑦 ( 𝑥 ∈ V ↦ 𝑥 ) 𝑧𝑧 = 𝑦 )
16 3 5 15 3bitr4i ( 𝑦 Bigcup 𝑧𝑦 ( 𝑥 ∈ V ↦ 𝑥 ) 𝑧 )
17 1 2 16 eqbrriv Bigcup = ( 𝑥 ∈ V ↦ 𝑥 )