Metamath Proof Explorer


Theorem fobigcup

Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fobigcup Bigcup : V –onto→ V

Proof

Step Hyp Ref Expression
1 uniexg ( 𝑥 ∈ V → 𝑥 ∈ V )
2 1 rgen 𝑥 ∈ V 𝑥 ∈ V
3 dfbigcup2 Bigcup = ( 𝑥 ∈ V ↦ 𝑥 )
4 3 mptfng ( ∀ 𝑥 ∈ V 𝑥 ∈ V ↔ Bigcup Fn V )
5 2 4 mpbi Bigcup Fn V
6 3 rnmpt ran Bigcup = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝑥 }
7 vex 𝑦 ∈ V
8 snex { 𝑦 } ∈ V
9 7 unisn { 𝑦 } = 𝑦
10 9 eqcomi 𝑦 = { 𝑦 }
11 unieq ( 𝑥 = { 𝑦 } → 𝑥 = { 𝑦 } )
12 11 rspceeqv ( ( { 𝑦 } ∈ V ∧ 𝑦 = { 𝑦 } ) → ∃ 𝑥 ∈ V 𝑦 = 𝑥 )
13 8 10 12 mp2an 𝑥 ∈ V 𝑦 = 𝑥
14 7 13 2th ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = 𝑥 )
15 14 abbi2i V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝑥 }
16 6 15 eqtr4i ran Bigcup = V
17 df-fo ( Bigcup : V –onto→ V ↔ ( Bigcup Fn V ∧ ran Bigcup = V ) )
18 5 16 17 mpbir2an Bigcup : V –onto→ V