Step |
Hyp |
Ref |
Expression |
1 |
|
uniexg |
⊢ ( 𝑥 ∈ V → ∪ 𝑥 ∈ V ) |
2 |
1
|
rgen |
⊢ ∀ 𝑥 ∈ V ∪ 𝑥 ∈ V |
3 |
|
dfbigcup2 |
⊢ Bigcup = ( 𝑥 ∈ V ↦ ∪ 𝑥 ) |
4 |
3
|
mptfng |
⊢ ( ∀ 𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V ) |
5 |
2 4
|
mpbi |
⊢ Bigcup Fn V |
6 |
3
|
rnmpt |
⊢ ran Bigcup = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 } |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
|
snex |
⊢ { 𝑦 } ∈ V |
9 |
7
|
unisn |
⊢ ∪ { 𝑦 } = 𝑦 |
10 |
9
|
eqcomi |
⊢ 𝑦 = ∪ { 𝑦 } |
11 |
|
unieq |
⊢ ( 𝑥 = { 𝑦 } → ∪ 𝑥 = ∪ { 𝑦 } ) |
12 |
11
|
rspceeqv |
⊢ ( ( { 𝑦 } ∈ V ∧ 𝑦 = ∪ { 𝑦 } ) → ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 ) |
13 |
8 10 12
|
mp2an |
⊢ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 |
14 |
7 13
|
2th |
⊢ ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 ) |
15 |
14
|
abbi2i |
⊢ V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 } |
16 |
6 15
|
eqtr4i |
⊢ ran Bigcup = V |
17 |
|
df-fo |
⊢ ( Bigcup : V –onto→ V ↔ ( Bigcup Fn V ∧ ran Bigcup = V ) ) |
18 |
5 16 17
|
mpbir2an |
⊢ Bigcup : V –onto→ V |