| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniexg |
⊢ ( 𝑥 ∈ V → ∪ 𝑥 ∈ V ) |
| 2 |
1
|
rgen |
⊢ ∀ 𝑥 ∈ V ∪ 𝑥 ∈ V |
| 3 |
|
dfbigcup2 |
⊢ Bigcup = ( 𝑥 ∈ V ↦ ∪ 𝑥 ) |
| 4 |
3
|
mptfng |
⊢ ( ∀ 𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V ) |
| 5 |
2 4
|
mpbi |
⊢ Bigcup Fn V |
| 6 |
3
|
rnmpt |
⊢ ran Bigcup = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 } |
| 7 |
|
vex |
⊢ 𝑦 ∈ V |
| 8 |
|
vsnex |
⊢ { 𝑦 } ∈ V |
| 9 |
|
unisnv |
⊢ ∪ { 𝑦 } = 𝑦 |
| 10 |
9
|
eqcomi |
⊢ 𝑦 = ∪ { 𝑦 } |
| 11 |
|
unieq |
⊢ ( 𝑥 = { 𝑦 } → ∪ 𝑥 = ∪ { 𝑦 } ) |
| 12 |
11
|
rspceeqv |
⊢ ( ( { 𝑦 } ∈ V ∧ 𝑦 = ∪ { 𝑦 } ) → ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 ) |
| 13 |
8 10 12
|
mp2an |
⊢ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 |
| 14 |
7 13
|
2th |
⊢ ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 ) |
| 15 |
14
|
eqabi |
⊢ V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 } |
| 16 |
6 15
|
eqtr4i |
⊢ ran Bigcup = V |
| 17 |
|
df-fo |
⊢ ( Bigcup : V –onto→ V ↔ ( Bigcup Fn V ∧ ran Bigcup = V ) ) |
| 18 |
5 16 17
|
mpbir2an |
⊢ Bigcup : V –onto→ V |