Metamath Proof Explorer


Theorem fobigcup

Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion fobigcup 𝖡𝗂𝗀𝖼𝗎𝗉 : V onto V

Proof

Step Hyp Ref Expression
1 uniexg x V x V
2 1 rgen x V x V
3 dfbigcup2 𝖡𝗂𝗀𝖼𝗎𝗉 = x V x
4 3 mptfng x V x V 𝖡𝗂𝗀𝖼𝗎𝗉 Fn V
5 2 4 mpbi 𝖡𝗂𝗀𝖼𝗎𝗉 Fn V
6 3 rnmpt ran 𝖡𝗂𝗀𝖼𝗎𝗉 = y | x V y = x
7 vex y V
8 snex y V
9 7 unisn y = y
10 9 eqcomi y = y
11 unieq x = y x = y
12 11 rspceeqv y V y = y x V y = x
13 8 10 12 mp2an x V y = x
14 7 13 2th y V x V y = x
15 14 abbi2i V = y | x V y = x
16 6 15 eqtr4i ran 𝖡𝗂𝗀𝖼𝗎𝗉 = V
17 df-fo 𝖡𝗂𝗀𝖼𝗎𝗉 : V onto V 𝖡𝗂𝗀𝖼𝗎𝗉 Fn V ran 𝖡𝗂𝗀𝖼𝗎𝗉 = V
18 5 16 17 mpbir2an 𝖡𝗂𝗀𝖼𝗎𝗉 : V onto V