Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
fobigcup
Next ⟩
fnbigcup
Metamath Proof Explorer
Ascii
Unicode
Theorem
fobigcup
Description:
Bigcup
maps the universe onto itself.
(Contributed by
Scott Fenton
, 16-Apr-2012)
Ref
Expression
Assertion
fobigcup
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
:
V
⟶
onto
V
Proof
Step
Hyp
Ref
Expression
1
uniexg
⊢
x
∈
V
→
⋃
x
∈
V
2
1
rgen
⊢
∀
x
∈
V
⋃
x
∈
V
3
dfbigcup2
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
=
x
∈
V
⟼
⋃
x
4
3
mptfng
⊢
∀
x
∈
V
⋃
x
∈
V
↔
𝖡𝗂𝗀𝖼𝗎𝗉
Fn
V
5
2
4
mpbi
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
Fn
V
6
3
rnmpt
⊢
ran
⁡
𝖡𝗂𝗀𝖼𝗎𝗉
=
y
|
∃
x
∈
V
y
=
⋃
x
7
vex
⊢
y
∈
V
8
snex
⊢
y
∈
V
9
7
unisn
⊢
⋃
y
=
y
10
9
eqcomi
⊢
y
=
⋃
y
11
unieq
⊢
x
=
y
→
⋃
x
=
⋃
y
12
11
rspceeqv
⊢
y
∈
V
∧
y
=
⋃
y
→
∃
x
∈
V
y
=
⋃
x
13
8
10
12
mp2an
⊢
∃
x
∈
V
y
=
⋃
x
14
7
13
2th
⊢
y
∈
V
↔
∃
x
∈
V
y
=
⋃
x
15
14
abbi2i
⊢
V
=
y
|
∃
x
∈
V
y
=
⋃
x
16
6
15
eqtr4i
⊢
ran
⁡
𝖡𝗂𝗀𝖼𝗎𝗉
=
V
17
df-fo
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
:
V
⟶
onto
V
↔
𝖡𝗂𝗀𝖼𝗎𝗉
Fn
V
∧
ran
⁡
𝖡𝗂𝗀𝖼𝗎𝗉
=
V
18
5
16
17
mpbir2an
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
:
V
⟶
onto
V