Step |
Hyp |
Ref |
Expression |
1 |
|
brtxpsd2.1 |
⊢ 𝐴 ∈ V |
2 |
|
brtxpsd2.2 |
⊢ 𝐵 ∈ V |
3 |
|
brtxpsd2.3 |
⊢ 𝑅 = ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) |
4 |
|
brtxpsd2.4 |
⊢ 𝐴 𝐶 𝐵 |
5 |
3
|
breqi |
⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) 𝐵 ) |
6 |
|
brdif |
⊢ ( 𝐴 ( 𝐶 ∖ ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) ) 𝐵 ↔ ( 𝐴 𝐶 𝐵 ∧ ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ) ) |
7 |
5 6
|
bitri |
⊢ ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 𝐶 𝐵 ∧ ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ) ) |
8 |
4 7
|
mpbiran |
⊢ ( 𝐴 𝑅 𝐵 ↔ ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ) |
9 |
1 2
|
brtxpsd |
⊢ ( ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑆 ⊗ V ) ) 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) |
10 |
8 9
|
bitri |
⊢ ( 𝐴 𝑅 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 ↔ 𝑥 𝑆 𝐴 ) ) |