| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brtxpsd2.1 |
|- A e. _V |
| 2 |
|
brtxpsd2.2 |
|- B e. _V |
| 3 |
|
brtxpsd2.3 |
|- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) |
| 4 |
|
brtxpsd2.4 |
|- A C B |
| 5 |
3
|
breqi |
|- ( A R B <-> A ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) B ) |
| 6 |
|
brdif |
|- ( A ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) B <-> ( A C B /\ -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) ) |
| 7 |
5 6
|
bitri |
|- ( A R B <-> ( A C B /\ -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) ) |
| 8 |
4 7
|
mpbiran |
|- ( A R B <-> -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) |
| 9 |
1 2
|
brtxpsd |
|- ( -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B <-> A. x ( x e. B <-> x S A ) ) |
| 10 |
8 9
|
bitri |
|- ( A R B <-> A. x ( x e. B <-> x S A ) ) |