Step |
Hyp |
Ref |
Expression |
1 |
|
brtxpsd2.1 |
|- A e. _V |
2 |
|
brtxpsd2.2 |
|- B e. _V |
3 |
|
brtxpsd2.3 |
|- R = ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) |
4 |
|
brtxpsd2.4 |
|- A C B |
5 |
3
|
breqi |
|- ( A R B <-> A ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) B ) |
6 |
|
brdif |
|- ( A ( C \ ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) ) B <-> ( A C B /\ -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) ) |
7 |
5 6
|
bitri |
|- ( A R B <-> ( A C B /\ -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) ) |
8 |
4 7
|
mpbiran |
|- ( A R B <-> -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B ) |
9 |
1 2
|
brtxpsd |
|- ( -. A ran ( ( _V (x) _E ) /_\ ( S (x) _V ) ) B <-> A. x ( x e. B <-> x S A ) ) |
10 |
8 9
|
bitri |
|- ( A R B <-> A. x ( x e. B <-> x S A ) ) |