Step |
Hyp |
Ref |
Expression |
1 |
|
brtxpsd.1 |
|- A e. _V |
2 |
|
brtxpsd.2 |
|- B e. _V |
3 |
|
df-br |
|- ( A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) ) |
4 |
|
opex |
|- <. A , B >. e. _V |
5 |
4
|
elrn |
|- ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. ) |
6 |
|
brsymdif |
|- ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) ) |
7 |
|
brv |
|- x _V A |
8 |
|
vex |
|- x e. _V |
9 |
8 1 2
|
brtxp |
|- ( x ( _V (x) _E ) <. A , B >. <-> ( x _V A /\ x _E B ) ) |
10 |
7 9
|
mpbiran |
|- ( x ( _V (x) _E ) <. A , B >. <-> x _E B ) |
11 |
2
|
epeli |
|- ( x _E B <-> x e. B ) |
12 |
10 11
|
bitri |
|- ( x ( _V (x) _E ) <. A , B >. <-> x e. B ) |
13 |
|
brv |
|- x _V B |
14 |
8 1 2
|
brtxp |
|- ( x ( R (x) _V ) <. A , B >. <-> ( x R A /\ x _V B ) ) |
15 |
13 14
|
mpbiran2 |
|- ( x ( R (x) _V ) <. A , B >. <-> x R A ) |
16 |
12 15
|
bibi12i |
|- ( ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) <-> ( x e. B <-> x R A ) ) |
17 |
6 16
|
xchbinx |
|- ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x e. B <-> x R A ) ) |
18 |
17
|
exbii |
|- ( E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> E. x -. ( x e. B <-> x R A ) ) |
19 |
5 18
|
bitri |
|- ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x -. ( x e. B <-> x R A ) ) |
20 |
|
exnal |
|- ( E. x -. ( x e. B <-> x R A ) <-> -. A. x ( x e. B <-> x R A ) ) |
21 |
3 19 20
|
3bitrri |
|- ( -. A. x ( x e. B <-> x R A ) <-> A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B ) |
22 |
21
|
con1bii |
|- ( -. A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> A. x ( x e. B <-> x R A ) ) |