Metamath Proof Explorer


Theorem brtxpsd

Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brtxpsd.1
|- A e. _V
brtxpsd.2
|- B e. _V
Assertion brtxpsd
|- ( -. A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> A. x ( x e. B <-> x R A ) )

Proof

Step Hyp Ref Expression
1 brtxpsd.1
 |-  A e. _V
2 brtxpsd.2
 |-  B e. _V
3 df-br
 |-  ( A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) )
4 opex
 |-  <. A , B >. e. _V
5 4 elrn
 |-  ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. )
6 brsymdif
 |-  ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) )
7 brv
 |-  x _V A
8 vex
 |-  x e. _V
9 8 1 2 brtxp
 |-  ( x ( _V (x) _E ) <. A , B >. <-> ( x _V A /\ x _E B ) )
10 7 9 mpbiran
 |-  ( x ( _V (x) _E ) <. A , B >. <-> x _E B )
11 2 epeli
 |-  ( x _E B <-> x e. B )
12 10 11 bitri
 |-  ( x ( _V (x) _E ) <. A , B >. <-> x e. B )
13 brv
 |-  x _V B
14 8 1 2 brtxp
 |-  ( x ( R (x) _V ) <. A , B >. <-> ( x R A /\ x _V B ) )
15 13 14 mpbiran2
 |-  ( x ( R (x) _V ) <. A , B >. <-> x R A )
16 12 15 bibi12i
 |-  ( ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) <-> ( x e. B <-> x R A ) )
17 6 16 xchbinx
 |-  ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x e. B <-> x R A ) )
18 17 exbii
 |-  ( E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> E. x -. ( x e. B <-> x R A ) )
19 5 18 bitri
 |-  ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x -. ( x e. B <-> x R A ) )
20 exnal
 |-  ( E. x -. ( x e. B <-> x R A ) <-> -. A. x ( x e. B <-> x R A ) )
21 3 19 20 3bitrri
 |-  ( -. A. x ( x e. B <-> x R A ) <-> A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B )
22 21 con1bii
 |-  ( -. A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> A. x ( x e. B <-> x R A ) )