| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brtxpsd.1 |  |-  A e. _V | 
						
							| 2 |  | brtxpsd.2 |  |-  B e. _V | 
						
							| 3 |  | df-br |  |-  ( A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) ) | 
						
							| 4 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 5 | 4 | elrn |  |-  ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. ) | 
						
							| 6 |  | brsymdif |  |-  ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) ) | 
						
							| 7 |  | brv |  |-  x _V A | 
						
							| 8 |  | vex |  |-  x e. _V | 
						
							| 9 | 8 1 2 | brtxp |  |-  ( x ( _V (x) _E ) <. A , B >. <-> ( x _V A /\ x _E B ) ) | 
						
							| 10 | 7 9 | mpbiran |  |-  ( x ( _V (x) _E ) <. A , B >. <-> x _E B ) | 
						
							| 11 | 2 | epeli |  |-  ( x _E B <-> x e. B ) | 
						
							| 12 | 10 11 | bitri |  |-  ( x ( _V (x) _E ) <. A , B >. <-> x e. B ) | 
						
							| 13 |  | brv |  |-  x _V B | 
						
							| 14 | 8 1 2 | brtxp |  |-  ( x ( R (x) _V ) <. A , B >. <-> ( x R A /\ x _V B ) ) | 
						
							| 15 | 13 14 | mpbiran2 |  |-  ( x ( R (x) _V ) <. A , B >. <-> x R A ) | 
						
							| 16 | 12 15 | bibi12i |  |-  ( ( x ( _V (x) _E ) <. A , B >. <-> x ( R (x) _V ) <. A , B >. ) <-> ( x e. B <-> x R A ) ) | 
						
							| 17 | 6 16 | xchbinx |  |-  ( x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> -. ( x e. B <-> x R A ) ) | 
						
							| 18 | 17 | exbii |  |-  ( E. x x ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <. A , B >. <-> E. x -. ( x e. B <-> x R A ) ) | 
						
							| 19 | 5 18 | bitri |  |-  ( <. A , B >. e. ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) <-> E. x -. ( x e. B <-> x R A ) ) | 
						
							| 20 |  | exnal |  |-  ( E. x -. ( x e. B <-> x R A ) <-> -. A. x ( x e. B <-> x R A ) ) | 
						
							| 21 | 3 19 20 | 3bitrri |  |-  ( -. A. x ( x e. B <-> x R A ) <-> A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B ) | 
						
							| 22 | 21 | con1bii |  |-  ( -. A ran ( ( _V (x) _E ) /_\ ( R (x) _V ) ) B <-> A. x ( x e. B <-> x R A ) ) |