Metamath Proof Explorer


Theorem brtxpsd

Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brtxpsd.1 𝐴 ∈ V
brtxpsd.2 𝐵 ∈ V
Assertion brtxpsd ( ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 brtxpsd.1 𝐴 ∈ V
2 brtxpsd.2 𝐵 ∈ V
3 df-br ( 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) )
4 opex 𝐴 , 𝐵 ⟩ ∈ V
5 4 elrn ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ↔ ∃ 𝑥 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ⟨ 𝐴 , 𝐵 ⟩ )
6 brsymdif ( 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ⟨ 𝐴 , 𝐵 ⟩ ↔ ¬ ( 𝑥 ( V ⊗ E ) ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑥 ( 𝑅 ⊗ V ) ⟨ 𝐴 , 𝐵 ⟩ ) )
7 brv 𝑥 V 𝐴
8 vex 𝑥 ∈ V
9 8 1 2 brtxp ( 𝑥 ( V ⊗ E ) ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑥 V 𝐴𝑥 E 𝐵 ) )
10 7 9 mpbiran ( 𝑥 ( V ⊗ E ) ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑥 E 𝐵 )
11 2 epeli ( 𝑥 E 𝐵𝑥𝐵 )
12 10 11 bitri ( 𝑥 ( V ⊗ E ) ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑥𝐵 )
13 brv 𝑥 V 𝐵
14 8 1 2 brtxp ( 𝑥 ( 𝑅 ⊗ V ) ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑥 𝑅 𝐴𝑥 V 𝐵 ) )
15 13 14 mpbiran2 ( 𝑥 ( 𝑅 ⊗ V ) ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑥 𝑅 𝐴 )
16 12 15 bibi12i ( ( 𝑥 ( V ⊗ E ) ⟨ 𝐴 , 𝐵 ⟩ ↔ 𝑥 ( 𝑅 ⊗ V ) ⟨ 𝐴 , 𝐵 ⟩ ) ↔ ( 𝑥𝐵𝑥 𝑅 𝐴 ) )
17 6 16 xchbinx ( 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ⟨ 𝐴 , 𝐵 ⟩ ↔ ¬ ( 𝑥𝐵𝑥 𝑅 𝐴 ) )
18 17 exbii ( ∃ 𝑥 𝑥 ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ⟨ 𝐴 , 𝐵 ⟩ ↔ ∃ 𝑥 ¬ ( 𝑥𝐵𝑥 𝑅 𝐴 ) )
19 5 18 bitri ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) ↔ ∃ 𝑥 ¬ ( 𝑥𝐵𝑥 𝑅 𝐴 ) )
20 exnal ( ∃ 𝑥 ¬ ( 𝑥𝐵𝑥 𝑅 𝐴 ) ↔ ¬ ∀ 𝑥 ( 𝑥𝐵𝑥 𝑅 𝐴 ) )
21 3 19 20 3bitrri ( ¬ ∀ 𝑥 ( 𝑥𝐵𝑥 𝑅 𝐴 ) ↔ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 )
22 21 con1bii ( ¬ 𝐴 ran ( ( V ⊗ E ) △ ( 𝑅 ⊗ V ) ) 𝐵 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥 𝑅 𝐴 ) )