Metamath Proof Explorer
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
|
|
Ref |
Expression |
|
Hypotheses |
brsingle.1 |
|
|
|
brsingle.2 |
|
|
Assertion |
brsingle |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
brsingle.1 |
|
2 |
|
brsingle.2 |
|
3 |
|
df-singleton |
|
4 |
|
brxp |
|
5 |
1 2 4
|
mpbir2an |
|
6 |
|
velsn |
|
7 |
1
|
ideq |
|
8 |
6 7
|
bitr4i |
|
9 |
1 2 3 5 8
|
brtxpsd3 |
|