Metamath Proof Explorer


Theorem brsingle

Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brsingle.1 A V
brsingle.2 B V
Assertion brsingle A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 B B = A

Proof

Step Hyp Ref Expression
1 brsingle.1 A V
2 brsingle.2 B V
3 df-singleton 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 = V × V ran V E I V
4 brxp A V × V B A V B V
5 1 2 4 mpbir2an A V × V B
6 velsn x A x = A
7 1 ideq x I A x = A
8 6 7 bitr4i x A x I A
9 1 2 3 5 8 brtxpsd3 A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 B B = A