Metamath Proof Explorer


Theorem brsingle

Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brsingle.1 AV
brsingle.2 BV
Assertion brsingle A𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇BB=A

Proof

Step Hyp Ref Expression
1 brsingle.1 AV
2 brsingle.2 BV
3 df-singleton 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇=V×VranVEIV
4 brxp AV×VBAVBV
5 1 2 4 mpbir2an AV×VB
6 velsn xAx=A
7 1 ideq xIAx=A
8 6 7 bitr4i xAxIA
9 1 2 3 5 8 brtxpsd3 A𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇BB=A