Metamath Proof Explorer
Description: The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
|
|
Ref |
Expression |
|
Hypotheses |
brsingle.1 |
⊢ 𝐴 ∈ V |
|
|
brsingle.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
brsingle |
⊢ ( 𝐴 Singleton 𝐵 ↔ 𝐵 = { 𝐴 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
brsingle.1 |
⊢ 𝐴 ∈ V |
2 |
|
brsingle.2 |
⊢ 𝐵 ∈ V |
3 |
|
df-singleton |
⊢ Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |
4 |
|
brxp |
⊢ ( 𝐴 ( V × V ) 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
5 |
1 2 4
|
mpbir2an |
⊢ 𝐴 ( V × V ) 𝐵 |
6 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
7 |
1
|
ideq |
⊢ ( 𝑥 I 𝐴 ↔ 𝑥 = 𝐴 ) |
8 |
6 7
|
bitr4i |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 I 𝐴 ) |
9 |
1 2 3 5 8
|
brtxpsd3 |
⊢ ( 𝐴 Singleton 𝐵 ↔ 𝐵 = { 𝐴 } ) |