Description: Define the singleton function. See brsingle for its value. (Contributed by Scott Fenton, 4-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-singleton | ⊢ Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | csingle | ⊢ Singleton | |
1 | cvv | ⊢ V | |
2 | 1 1 | cxp | ⊢ ( V × V ) |
3 | cep | ⊢ E | |
4 | 1 3 | ctxp | ⊢ ( V ⊗ E ) |
5 | cid | ⊢ I | |
6 | 5 1 | ctxp | ⊢ ( I ⊗ V ) |
7 | 4 6 | csymdif | ⊢ ( ( V ⊗ E ) △ ( I ⊗ V ) ) |
8 | 7 | crn | ⊢ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) |
9 | 2 8 | cdif | ⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |
10 | 0 9 | wceq | ⊢ Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |