Metamath Proof Explorer


Definition df-singleton

Description: Define the singleton function. See brsingle for its value. (Contributed by Scott Fenton, 4-Apr-2014)

Ref Expression
Assertion df-singleton Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csingle Singleton
1 cvv V
2 1 1 cxp ( V × V )
3 cep E
4 1 3 ctxp ( V ⊗ E )
5 cid I
6 5 1 ctxp ( I ⊗ V )
7 4 6 csymdif ( ( V ⊗ E ) △ ( I ⊗ V ) )
8 7 crn ran ( ( V ⊗ E ) △ ( I ⊗ V ) )
9 2 8 cdif ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) )
10 0 9 wceq Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) )