Metamath Proof Explorer


Theorem fnsingle

Description: The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion fnsingle Singleton Fn V

Proof

Step Hyp Ref Expression
1 difss ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ⊆ ( V × V )
2 df-rel ( Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ↔ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ⊆ ( V × V ) )
3 1 2 mpbir Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) )
4 df-singleton Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) )
5 4 releqi ( Rel Singleton ↔ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) )
6 3 5 mpbir Rel Singleton
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 brsingle ( 𝑥 Singleton 𝑦𝑦 = { 𝑥 } )
10 vex 𝑧 ∈ V
11 7 10 brsingle ( 𝑥 Singleton 𝑧𝑧 = { 𝑥 } )
12 eqtr3 ( ( 𝑦 = { 𝑥 } ∧ 𝑧 = { 𝑥 } ) → 𝑦 = 𝑧 )
13 9 11 12 syl2anb ( ( 𝑥 Singleton 𝑦𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 )
14 13 ax-gen 𝑧 ( ( 𝑥 Singleton 𝑦𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 )
15 14 gen2 𝑥𝑦𝑧 ( ( 𝑥 Singleton 𝑦𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 )
16 dffun2 ( Fun Singleton ↔ ( Rel Singleton ∧ ∀ 𝑥𝑦𝑧 ( ( 𝑥 Singleton 𝑦𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) ) )
17 6 15 16 mpbir2an Fun Singleton
18 eqv ( dom Singleton = V ↔ ∀ 𝑥 𝑥 ∈ dom Singleton )
19 eqid { 𝑥 } = { 𝑥 }
20 snex { 𝑥 } ∈ V
21 7 20 brsingle ( 𝑥 Singleton { 𝑥 } ↔ { 𝑥 } = { 𝑥 } )
22 19 21 mpbir 𝑥 Singleton { 𝑥 }
23 breq2 ( 𝑦 = { 𝑥 } → ( 𝑥 Singleton 𝑦𝑥 Singleton { 𝑥 } ) )
24 20 23 spcev ( 𝑥 Singleton { 𝑥 } → ∃ 𝑦 𝑥 Singleton 𝑦 )
25 22 24 ax-mp 𝑦 𝑥 Singleton 𝑦
26 7 eldm ( 𝑥 ∈ dom Singleton ↔ ∃ 𝑦 𝑥 Singleton 𝑦 )
27 25 26 mpbir 𝑥 ∈ dom Singleton
28 18 27 mpgbir dom Singleton = V
29 df-fn ( Singleton Fn V ↔ ( Fun Singleton ∧ dom Singleton = V ) )
30 17 28 29 mpbir2an Singleton Fn V