Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ⊆ ( V × V ) |
2 |
|
df-rel |
⊢ ( Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ↔ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ⊆ ( V × V ) ) |
3 |
1 2
|
mpbir |
⊢ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |
4 |
|
df-singleton |
⊢ Singleton = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) |
5 |
4
|
releqi |
⊢ ( Rel Singleton ↔ Rel ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( I ⊗ V ) ) ) ) |
6 |
3 5
|
mpbir |
⊢ Rel Singleton |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
|
vex |
⊢ 𝑦 ∈ V |
9 |
7 8
|
brsingle |
⊢ ( 𝑥 Singleton 𝑦 ↔ 𝑦 = { 𝑥 } ) |
10 |
|
vex |
⊢ 𝑧 ∈ V |
11 |
7 10
|
brsingle |
⊢ ( 𝑥 Singleton 𝑧 ↔ 𝑧 = { 𝑥 } ) |
12 |
|
eqtr3 |
⊢ ( ( 𝑦 = { 𝑥 } ∧ 𝑧 = { 𝑥 } ) → 𝑦 = 𝑧 ) |
13 |
9 11 12
|
syl2anb |
⊢ ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) |
14 |
13
|
ax-gen |
⊢ ∀ 𝑧 ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) |
15 |
14
|
gen2 |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) |
16 |
|
dffun2 |
⊢ ( Fun Singleton ↔ ( Rel Singleton ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 Singleton 𝑦 ∧ 𝑥 Singleton 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
17 |
6 15 16
|
mpbir2an |
⊢ Fun Singleton |
18 |
|
eqv |
⊢ ( dom Singleton = V ↔ ∀ 𝑥 𝑥 ∈ dom Singleton ) |
19 |
|
eqid |
⊢ { 𝑥 } = { 𝑥 } |
20 |
|
snex |
⊢ { 𝑥 } ∈ V |
21 |
7 20
|
brsingle |
⊢ ( 𝑥 Singleton { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) |
22 |
19 21
|
mpbir |
⊢ 𝑥 Singleton { 𝑥 } |
23 |
|
breq2 |
⊢ ( 𝑦 = { 𝑥 } → ( 𝑥 Singleton 𝑦 ↔ 𝑥 Singleton { 𝑥 } ) ) |
24 |
20 23
|
spcev |
⊢ ( 𝑥 Singleton { 𝑥 } → ∃ 𝑦 𝑥 Singleton 𝑦 ) |
25 |
22 24
|
ax-mp |
⊢ ∃ 𝑦 𝑥 Singleton 𝑦 |
26 |
7
|
eldm |
⊢ ( 𝑥 ∈ dom Singleton ↔ ∃ 𝑦 𝑥 Singleton 𝑦 ) |
27 |
25 26
|
mpbir |
⊢ 𝑥 ∈ dom Singleton |
28 |
18 27
|
mpgbir |
⊢ dom Singleton = V |
29 |
|
df-fn |
⊢ ( Singleton Fn V ↔ ( Fun Singleton ∧ dom Singleton = V ) ) |
30 |
17 28 29
|
mpbir2an |
⊢ Singleton Fn V |