| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( Singleton ‘ 𝑥 ) = ( Singleton ‘ 𝐴 ) ) |
| 2 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( Singleton ‘ 𝑥 ) = { 𝑥 } ↔ ( Singleton ‘ 𝐴 ) = { 𝐴 } ) ) |
| 4 |
|
eqid |
⊢ { 𝑥 } = { 𝑥 } |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
|
vsnex |
⊢ { 𝑥 } ∈ V |
| 7 |
5 6
|
brsingle |
⊢ ( 𝑥 Singleton { 𝑥 } ↔ { 𝑥 } = { 𝑥 } ) |
| 8 |
4 7
|
mpbir |
⊢ 𝑥 Singleton { 𝑥 } |
| 9 |
|
fnsingle |
⊢ Singleton Fn V |
| 10 |
|
fnbrfvb |
⊢ ( ( Singleton Fn V ∧ 𝑥 ∈ V ) → ( ( Singleton ‘ 𝑥 ) = { 𝑥 } ↔ 𝑥 Singleton { 𝑥 } ) ) |
| 11 |
9 5 10
|
mp2an |
⊢ ( ( Singleton ‘ 𝑥 ) = { 𝑥 } ↔ 𝑥 Singleton { 𝑥 } ) |
| 12 |
8 11
|
mpbir |
⊢ ( Singleton ‘ 𝑥 ) = { 𝑥 } |
| 13 |
3 12
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( Singleton ‘ 𝐴 ) = { 𝐴 } ) |
| 14 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( Singleton ‘ 𝐴 ) = ∅ ) |
| 15 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
| 16 |
15
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 17 |
14 16
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( Singleton ‘ 𝐴 ) = { 𝐴 } ) |
| 18 |
13 17
|
pm2.61i |
⊢ ( Singleton ‘ 𝐴 ) = { 𝐴 } |