Metamath Proof Explorer


Theorem fvsingle

Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Revised by Scott Fenton, 13-Apr-2018)

Ref Expression
Assertion fvsingle 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A = A

Proof

Step Hyp Ref Expression
1 fveq2 x = A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x = 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A
2 sneq x = A x = A
3 1 2 eqeq12d x = A 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x = x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A = A
4 eqid x = x
5 vex x V
6 snex x V
7 5 6 brsingle x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x x = x
8 4 7 mpbir x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x
9 fnsingle 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Fn V
10 fnbrfvb 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 Fn V x V 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x = x x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x
11 9 5 10 mp2an 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x = x x 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x
12 8 11 mpbir 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 x = x
13 3 12 vtoclg A V 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A = A
14 fvprc ¬ A V 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A =
15 snprc ¬ A V A =
16 15 biimpi ¬ A V A =
17 14 16 eqtr4d ¬ A V 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A = A
18 13 17 pm2.61i 𝖲𝗂𝗇𝗀𝗅𝖾𝗍𝗈𝗇 A = A