Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = A -> ( Singleton ` x ) = ( Singleton ` A ) ) |
2 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
3 |
1 2
|
eqeq12d |
|- ( x = A -> ( ( Singleton ` x ) = { x } <-> ( Singleton ` A ) = { A } ) ) |
4 |
|
eqid |
|- { x } = { x } |
5 |
|
vex |
|- x e. _V |
6 |
|
snex |
|- { x } e. _V |
7 |
5 6
|
brsingle |
|- ( x Singleton { x } <-> { x } = { x } ) |
8 |
4 7
|
mpbir |
|- x Singleton { x } |
9 |
|
fnsingle |
|- Singleton Fn _V |
10 |
|
fnbrfvb |
|- ( ( Singleton Fn _V /\ x e. _V ) -> ( ( Singleton ` x ) = { x } <-> x Singleton { x } ) ) |
11 |
9 5 10
|
mp2an |
|- ( ( Singleton ` x ) = { x } <-> x Singleton { x } ) |
12 |
8 11
|
mpbir |
|- ( Singleton ` x ) = { x } |
13 |
3 12
|
vtoclg |
|- ( A e. _V -> ( Singleton ` A ) = { A } ) |
14 |
|
fvprc |
|- ( -. A e. _V -> ( Singleton ` A ) = (/) ) |
15 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
16 |
15
|
biimpi |
|- ( -. A e. _V -> { A } = (/) ) |
17 |
14 16
|
eqtr4d |
|- ( -. A e. _V -> ( Singleton ` A ) = { A } ) |
18 |
13 17
|
pm2.61i |
|- ( Singleton ` A ) = { A } |