Metamath Proof Explorer


Theorem fvsingle

Description: The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Revised by Scott Fenton, 13-Apr-2018)

Ref Expression
Assertion fvsingle
|- ( Singleton ` A ) = { A }

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( x = A -> ( Singleton ` x ) = ( Singleton ` A ) )
2 sneq
 |-  ( x = A -> { x } = { A } )
3 1 2 eqeq12d
 |-  ( x = A -> ( ( Singleton ` x ) = { x } <-> ( Singleton ` A ) = { A } ) )
4 eqid
 |-  { x } = { x }
5 vex
 |-  x e. _V
6 snex
 |-  { x } e. _V
7 5 6 brsingle
 |-  ( x Singleton { x } <-> { x } = { x } )
8 4 7 mpbir
 |-  x Singleton { x }
9 fnsingle
 |-  Singleton Fn _V
10 fnbrfvb
 |-  ( ( Singleton Fn _V /\ x e. _V ) -> ( ( Singleton ` x ) = { x } <-> x Singleton { x } ) )
11 9 5 10 mp2an
 |-  ( ( Singleton ` x ) = { x } <-> x Singleton { x } )
12 8 11 mpbir
 |-  ( Singleton ` x ) = { x }
13 3 12 vtoclg
 |-  ( A e. _V -> ( Singleton ` A ) = { A } )
14 fvprc
 |-  ( -. A e. _V -> ( Singleton ` A ) = (/) )
15 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
16 15 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
17 14 16 eqtr4d
 |-  ( -. A e. _V -> ( Singleton ` A ) = { A } )
18 13 17 pm2.61i
 |-  ( Singleton ` A ) = { A }