Metamath Proof Explorer


Theorem dfsingles2

Description: Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dfsingles2
|- Singletons = { x | E. y x = { y } }

Proof

Step Hyp Ref Expression
1 elsingles
 |-  ( x e. Singletons <-> E. y x = { y } )
2 1 abbi2i
 |-  Singletons = { x | E. y x = { y } }