Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | snelsingles.1 | |- A e. _V |
|
Assertion | snelsingles | |- { A } e. Singletons |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snelsingles.1 | |- A e. _V |
|
2 | isset | |- ( A e. _V <-> E. x x = A ) |
|
3 | eqcom | |- ( x = A <-> A = x ) |
|
4 | 3 | exbii | |- ( E. x x = A <-> E. x A = x ) |
5 | 2 4 | bitri | |- ( A e. _V <-> E. x A = x ) |
6 | 1 5 | mpbi | |- E. x A = x |
7 | sneq | |- ( A = x -> { A } = { x } ) |
|
8 | 6 7 | eximii | |- E. x { A } = { x } |
9 | elsingles | |- ( { A } e. Singletons <-> E. x { A } = { x } ) |
|
10 | 8 9 | mpbir | |- { A } e. Singletons |