Metamath Proof Explorer


Theorem snelsingles

Description: A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013)

Ref Expression
Hypothesis snelsingles.1
|- A e. _V
Assertion snelsingles
|- { A } e. Singletons

Proof

Step Hyp Ref Expression
1 snelsingles.1
 |-  A e. _V
2 isset
 |-  ( A e. _V <-> E. x x = A )
3 eqcom
 |-  ( x = A <-> A = x )
4 3 exbii
 |-  ( E. x x = A <-> E. x A = x )
5 2 4 bitri
 |-  ( A e. _V <-> E. x A = x )
6 1 5 mpbi
 |-  E. x A = x
7 sneq
 |-  ( A = x -> { A } = { x } )
8 6 7 eximii
 |-  E. x { A } = { x }
9 elsingles
 |-  ( { A } e. Singletons <-> E. x { A } = { x } )
10 8 9 mpbir
 |-  { A } e. Singletons