Metamath Proof Explorer


Theorem dfsingles2

Description: Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dfsingles2 βŠ’π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œ=x|βˆƒyx=y

Proof

Step Hyp Ref Expression
1 elsingles ⊒xβˆˆπ–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œβ†”βˆƒyx=y
2 1 eqabi βŠ’π–²π—‚π—‡π—€π—…π–Ύπ—π—ˆπ—‡π—Œ=x|βˆƒyx=y