Metamath Proof Explorer


Definition df-spthson

Description: Define the collection of simple paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 9-Jan-2021)

Ref Expression
Assertion df-spthson SPathsOn=gVaVtxg,bVtxgfp|faTrailsOngbpfSPathsgp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cspthson classSPathsOn
1 vg setvarg
2 cvv classV
3 va setvara
4 cvtx classVtx
5 1 cv setvarg
6 5 4 cfv classVtxg
7 vb setvarb
8 vf setvarf
9 vp setvarp
10 8 cv setvarf
11 3 cv setvara
12 ctrlson classTrailsOn
13 5 12 cfv classTrailsOng
14 7 cv setvarb
15 11 14 13 co classaTrailsOngb
16 9 cv setvarp
17 10 16 15 wbr wfffaTrailsOngbp
18 cspths classSPaths
19 5 18 cfv classSPathsg
20 10 16 19 wbr wfffSPathsgp
21 17 20 wa wfffaTrailsOngbpfSPathsgp
22 21 8 9 copab classfp|faTrailsOngbpfSPathsgp
23 3 7 6 6 22 cmpo classaVtxg,bVtxgfp|faTrailsOngbpfSPathsgp
24 1 2 23 cmpt classgVaVtxg,bVtxgfp|faTrailsOngbpfSPathsgp
25 0 24 wceq wffSPathsOn=gVaVtxg,bVtxgfp|faTrailsOngbpfSPathsgp