Metamath Proof Explorer


Definition df-sseq

Description: Define a builder for sequences by strong recursion, i.e., by computing the value of the n-th element of the sequence from all preceding elements and not just the previous one. (Contributed by Thierry Arnoux, 21-Apr-2019)

Ref Expression
Assertion df-sseq seqstr=mV,fVmlastSseqmxV,yVx++⟨“fx”⟩0×m++⟨“fm”⟩

Detailed syntax breakdown

Step Hyp Ref Expression
0 csseq classseqstr
1 vm setvarm
2 cvv classV
3 vf setvarf
4 1 cv setvarm
5 clsw classlastS
6 chash class.
7 4 6 cfv classm
8 vx setvarx
9 vy setvary
10 8 cv setvarx
11 cconcat class++
12 3 cv setvarf
13 10 12 cfv classfx
14 13 cs1 class⟨“fx”⟩
15 10 14 11 co classx++⟨“fx”⟩
16 8 9 2 2 15 cmpo classxV,yVx++⟨“fx”⟩
17 cn0 class0
18 4 12 cfv classfm
19 18 cs1 class⟨“fm”⟩
20 4 19 11 co classm++⟨“fm”⟩
21 20 csn classm++⟨“fm”⟩
22 17 21 cxp class0×m++⟨“fm”⟩
23 16 22 7 cseq classseqmxV,yVx++⟨“fx”⟩0×m++⟨“fm”⟩
24 5 23 ccom classlastSseqmxV,yVx++⟨“fx”⟩0×m++⟨“fm”⟩
25 4 24 cun classmlastSseqmxV,yVx++⟨“fx”⟩0×m++⟨“fm”⟩
26 1 3 2 2 25 cmpo classmV,fVmlastSseqmxV,yVx++⟨“fx”⟩0×m++⟨“fm”⟩
27 0 26 wceq wffseqstr=mV,fVmlastSseqmxV,yVx++⟨“fx”⟩0×m++⟨“fm”⟩