Metamath Proof Explorer


Definition df-stgr

Description: Definition of star graphs according to the first definition in Wikipedia, so that ( StarGrN ) has size N , and order N + 1 : ( StarGr0 ) will be a single vertex (graph without edges), see stgr0 , ( StarGr1 ) will be a single edge (graph with two vertices connected by an edge), see stgr1 , and ( StarGr3 ) will be a 3-star or "claw" (a star with 3 edges). (Contributed by AV, 10-Sep-2025)

Ref Expression
Assertion df-stgr Could not format assertion : No typesetting found for |- StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstgr Could not format StarGr : No typesetting found for class StarGr with typecode class
1 vn setvar n
2 cn0 class 0
3 cbs class Base
4 cnx class ndx
5 4 3 cfv class Base ndx
6 cc0 class 0
7 cfz class
8 1 cv setvar n
9 6 8 7 co class 0 n
10 5 9 cop class Base ndx 0 n
11 cedgf class ef
12 4 11 cfv class ef ndx
13 cid class I
14 ve setvar e
15 9 cpw class 𝒫 0 n
16 vx setvar x
17 c1 class 1
18 17 8 7 co class 1 n
19 14 cv setvar e
20 16 cv setvar x
21 6 20 cpr class 0 x
22 19 21 wceq wff e = 0 x
23 22 16 18 wrex wff x 1 n e = 0 x
24 23 14 15 crab class e 𝒫 0 n | x 1 n e = 0 x
25 13 24 cres class I e 𝒫 0 n | x 1 n e = 0 x
26 12 25 cop class ef ndx I e 𝒫 0 n | x 1 n e = 0 x
27 10 26 cpr class Base ndx 0 n ef ndx I e 𝒫 0 n | x 1 n e = 0 x
28 1 2 27 cmpt class n 0 Base ndx 0 n ef ndx I e 𝒫 0 n | x 1 n e = 0 x
29 0 28 wceq Could not format StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) : No typesetting found for wff StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) with typecode wff