Metamath Proof Explorer


Definition df-stgr

Description: Definition of star graphs according to the first definition in Wikipedia, so that ( StarGrN ) has size N , and order N + 1 : ( StarGr0 ) will be a single vertex (graph without edges), see stgr0 , ( StarGr1 ) will be a single edge (graph with two vertices connected by an edge), see stgr1 , and ( StarGr3 ) will be a 3-star or "claw" (a star with 3 edges). (Contributed by AV, 10-Sep-2025)

Ref Expression
Assertion df-stgr
|- StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstgr
 |-  StarGr
1 vn
 |-  n
2 cn0
 |-  NN0
3 cbs
 |-  Base
4 cnx
 |-  ndx
5 4 3 cfv
 |-  ( Base ` ndx )
6 cc0
 |-  0
7 cfz
 |-  ...
8 1 cv
 |-  n
9 6 8 7 co
 |-  ( 0 ... n )
10 5 9 cop
 |-  <. ( Base ` ndx ) , ( 0 ... n ) >.
11 cedgf
 |-  .ef
12 4 11 cfv
 |-  ( .ef ` ndx )
13 cid
 |-  _I
14 ve
 |-  e
15 9 cpw
 |-  ~P ( 0 ... n )
16 vx
 |-  x
17 c1
 |-  1
18 17 8 7 co
 |-  ( 1 ... n )
19 14 cv
 |-  e
20 16 cv
 |-  x
21 6 20 cpr
 |-  { 0 , x }
22 19 21 wceq
 |-  e = { 0 , x }
23 22 16 18 wrex
 |-  E. x e. ( 1 ... n ) e = { 0 , x }
24 23 14 15 crab
 |-  { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } }
25 13 24 cres
 |-  ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } )
26 12 25 cop
 |-  <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >.
27 10 26 cpr
 |-  { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. }
28 1 2 27 cmpt
 |-  ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } )
29 0 28 wceq
 |-  StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } )