Step |
Hyp |
Ref |
Expression |
0 |
|
cstgr |
|- StarGr |
1 |
|
vn |
|- n |
2 |
|
cn0 |
|- NN0 |
3 |
|
cbs |
|- Base |
4 |
|
cnx |
|- ndx |
5 |
4 3
|
cfv |
|- ( Base ` ndx ) |
6 |
|
cc0 |
|- 0 |
7 |
|
cfz |
|- ... |
8 |
1
|
cv |
|- n |
9 |
6 8 7
|
co |
|- ( 0 ... n ) |
10 |
5 9
|
cop |
|- <. ( Base ` ndx ) , ( 0 ... n ) >. |
11 |
|
cedgf |
|- .ef |
12 |
4 11
|
cfv |
|- ( .ef ` ndx ) |
13 |
|
cid |
|- _I |
14 |
|
ve |
|- e |
15 |
9
|
cpw |
|- ~P ( 0 ... n ) |
16 |
|
vx |
|- x |
17 |
|
c1 |
|- 1 |
18 |
17 8 7
|
co |
|- ( 1 ... n ) |
19 |
14
|
cv |
|- e |
20 |
16
|
cv |
|- x |
21 |
6 20
|
cpr |
|- { 0 , x } |
22 |
19 21
|
wceq |
|- e = { 0 , x } |
23 |
22 16 18
|
wrex |
|- E. x e. ( 1 ... n ) e = { 0 , x } |
24 |
23 14 15
|
crab |
|- { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } |
25 |
13 24
|
cres |
|- ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) |
26 |
12 25
|
cop |
|- <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. |
27 |
10 26
|
cpr |
|- { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } |
28 |
1 2 27
|
cmpt |
|- ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) |
29 |
0 28
|
wceq |
|- StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) |