Metamath Proof Explorer


Theorem stgrfv

Description: The star graph S_N. (Contributed by AV, 10-Sep-2025)

Ref Expression
Assertion stgrfv Could not format assertion : No typesetting found for |- ( N e. NN0 -> ( StarGr ` N ) = { <. ( Base ` ndx ) , ( 0 ... N ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) >. } ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-stgr Could not format StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) : No typesetting found for |- StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) with typecode |-
2 1 a1i Could not format ( N e. NN0 -> StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) ) : No typesetting found for |- ( N e. NN0 -> StarGr = ( n e. NN0 |-> { <. ( Base ` ndx ) , ( 0 ... n ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... n ) | E. x e. ( 1 ... n ) e = { 0 , x } } ) >. } ) ) with typecode |-
3 oveq2 n = N 0 n = 0 N
4 3 opeq2d n = N Base ndx 0 n = Base ndx 0 N
5 3 pweqd n = N 𝒫 0 n = 𝒫 0 N
6 oveq2 n = N 1 n = 1 N
7 6 rexeqdv n = N x 1 n e = 0 x x 1 N e = 0 x
8 5 7 rabeqbidv n = N e 𝒫 0 n | x 1 n e = 0 x = e 𝒫 0 N | x 1 N e = 0 x
9 8 reseq2d n = N I e 𝒫 0 n | x 1 n e = 0 x = I e 𝒫 0 N | x 1 N e = 0 x
10 9 opeq2d n = N ef ndx I e 𝒫 0 n | x 1 n e = 0 x = ef ndx I e 𝒫 0 N | x 1 N e = 0 x
11 4 10 preq12d n = N Base ndx 0 n ef ndx I e 𝒫 0 n | x 1 n e = 0 x = Base ndx 0 N ef ndx I e 𝒫 0 N | x 1 N e = 0 x
12 11 adantl N 0 n = N Base ndx 0 n ef ndx I e 𝒫 0 n | x 1 n e = 0 x = Base ndx 0 N ef ndx I e 𝒫 0 N | x 1 N e = 0 x
13 id N 0 N 0
14 prex Base ndx 0 N ef ndx I e 𝒫 0 N | x 1 N e = 0 x V
15 14 a1i N 0 Base ndx 0 N ef ndx I e 𝒫 0 N | x 1 N e = 0 x V
16 2 12 13 15 fvmptd Could not format ( N e. NN0 -> ( StarGr ` N ) = { <. ( Base ` ndx ) , ( 0 ... N ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) >. } ) : No typesetting found for |- ( N e. NN0 -> ( StarGr ` N ) = { <. ( Base ` ndx ) , ( 0 ... N ) >. , <. ( .ef ` ndx ) , ( _I |` { e e. ~P ( 0 ... N ) | E. x e. ( 1 ... N ) e = { 0 , x } } ) >. } ) with typecode |-